Terrestrial Ecosystem Ecology

Principles and Applications

Göran I. Ågren

Swedish University of Agricultural Sciences

Folke O. Andersson

Swedish University of Agricultural Sciences

Contents

List of boxe Preface	s pag	ge xiii xv
Prologue	Environmental changes and ecosystem effects: two historical examples	1
Acid rain		1
Global warn	ning	4
Approaches	to solutions	5
Further rea	ding	6
SECTIC	N I HISTORY AND CONCEPTS	7
I History	of ecology	8
Protoecolog	_i y	8
Early ecolog	<u>zy</u>	9
The ecosyst	em concept	11
Modern ecc		12
Biome ecolo	**	13
	biome ecology: the Hubbard Brook project	14
	ecosystem research	14
	stem research	15
	research requires long-term observations and aspects	
Landscape e		16
	on-equilibrium ecology	16
	ity and biodiversity	17
Further rea	ding	17
2 Ecology	v, ecosystem and ecosystem science	18
Ecology		18
Ecosystem		20
•	science or ecosystem ecology?	21
Further rea	ding	24
3 Ecosyst method	em ecology: cornerstones and scientific lology	25
A note on t	erminology	25
Understand	ing processes	25
Basic princi	ples and scientific methodology	29
Cornerston	es	30
Mass b	alance	30
Steady	state	31

Limiting nutrients	32
Optimality	32
One equation says more than a thousand words	34
Understanding the cornerstones	35
Further reading	38

39

SECTION II ECOSYSTEM STRUCTURE AND FUNCTION

4 Ecosystem structure: site factors, soil and vegetation	40			
Terrestrial ecosystems and site factors	40			
Soil physics and chemistry				
The soil in an ecosystem context	41			
Soil physical properties	42			
Soil air	45			
Soil water	46			
Soil chemical properties, mineral nutrients and plants	46			
Soil reactions and availability of mineral nutrients	47			
Soil types	49			
Ecosystem layering	51			
Terrestrial biomes	55			
Vegetation	55			
Features of terrestrial biomes and ecosystems	56			
Further reading	62			
5 Energy and water	64			
Solar energy	64			
Water balance	72			
Evapotranspiration	75			
Potential and actual evapotranspiration	78			
SPAC: The soil-plant-atmosphere continuum	82			
Further reading	87			
6 Plant production	88			
Photosynthesis at leaf level	88			
C3, C4 and CAM photosynthesis	92			
Leaf area index and specific leaf area	95			
Light extinction within a canopy	98			
Photosynthesis at canopy level	102			
Light-use efficiency	103			
Water-use efficiency	105			
Plant respiration	106			
Growth respiration	106			
Maintenance respiration	108			
Root respiration and ion uptake	108			
Plant nutrient relationships	108			

ix

Nutrient productivity	109				
Nutrient-use efficiency	105				
Plant allocation	111				
Plant nutrient uptake Steady-state nutrition					
					Global plant traits
Further reading	123				
7 Soil organic matter dynamics	124				
Litter and soil organic matter	124				
A model of litter decomposition	125				
Litter quality	130				
Abiotic controls	135				
Extracellular enzymes	137				
Other controlling factors	139				
Element concentration in decomposers	139				
Soil food webs	140				
Models of soil organic matter	141				
Further reading	144				
8 Organisms and ecosystem processes	145				
Species and ecosystems	145				
Concepts of stability					
Species matter					
Or maybe not	149				
Further reading	150				
9 Element cycles	151				
Ecosystem scale	153				
The carbon cycle	153				
The nitrogen cycle	161				
The phosphorus cycle	169				
The potassium cycle	171				
The calcium cycle	172				
The magnesium cycle	173				
The sulfur cycle	174				
Element cycling in a temperate Norway spruce forest	175				
Comparison of element cycling in different terrestrial					
ecosystems	180				
Biomass Production	180 180				
Plant biomass tumover	182				
Nitrogen-use efficiency: NUE	183 184				
Degree of openness Turnover time of soil carbon	184				
Turnover time of soil nitrogen	185				
Soil carbon/plant carbon ratio Soil nitrogen/plant nitrogen ratio	186 186				
Son the open plant the open rules	100				

Global scale	186
The carbon cycle	186
The nitrogen cycle	188
The phosphorus cycle	190
The sulfur cycle	191
Human influence on element mass balances	191
Further reading	198
10 Principles	200
Principles pertaining to boundary conditions (B)	200
Principle B1. On boundaries and storage	200
Principle B2. On perturbing boundaries	202
Principle B3. On nitrogen vs. phosphorus limitation	202
Principle B4. On production and openness	203
Principle B5. On time scales and openness	203
Principles pertaining to energy and water (A)	204
Principle A1. On climatic and ecosystem distribution	204
Principles pertaining to plant processes (P)	204
Principle PI. On element availability	204
Principle P2. On light limitation	206
Principle P3. On nutrient limitation	206
Principle P4. On water limitation	206
Principle P5. On resource use efficiency and acquisition	206
Principles pertaining to soil processes (S)	207
Principle S1. On decomposition – energy limitation	207
Principle S2. On nitrogen fixation	208
Principle S3. On nitrogen leaching	208
Principles pertaining to element cycles (E)	208
Principle E1. On openness of element cycles	208
Principle E2. On element distributions	209
Principle E3. On ecosystem carbon storage	210
Further reading	212

SECTION III | ECOSYSTEM DYNAMICS AT DIFFERENT TIME SCALES

213

II Tectonic to orbital changes	215			
Changes during the development of the biosphere Further reading				
12 Millennial to centennial or postglacial changes	225			
Postglacial development Humans, climate and ecosystems				
Centennial to recent changes				

245

284

287

13	Centennial to annual changes	235			
Win	ıd	235			
Fire					
Grazing and other animal impacts					
	The tropical case	238			
	The boreal case	241			
Stag	242				
Furt	her reading	244			

S	Ε	C.	T	10	N	IV	APPL	ICATIONS
---	---	----	---	----	---	----	------	-----------------

I4 Air	pollution and forest ecosystems	246				
Direct effects of air pollution on trees						
Indirect e	Indirect effects of air pollution on forest ecosystems					
Empirical evidence						
	Forest soil acidification: centennial to recent changes	250				
	Biological versus pollution-generated acidification: the hydrogen ion budget approach	253				
	Nutritional changes in trees	253				
Growth rate changes in forests						
Vegetation changes						
•	erimental evidence: understanding	258				
	oads and the future	260				
	oads from a European perspective	261				
Further r	eading	263				
I5 Glo	bal change	264				
Effects on ecosystem carbon balance						
Atm	ospheric carbon dioxide	265				
Tem	perature	266				
Nitrogen						
Pred	ipitation	267				
Effects or	ecosystem nitrogen balance	268				
Interactio	ons	269				
Threshold	l effects	270				
Bioenergy	v: cure or curse?	271				
Further r	eading	274				
Epilogu	e Society and terrestrial ecosystem ecology	275				
What are	ecosystem services?	276				
Ecosystem changes in the last 50 years						
Linking s	ociety and the scientific community	280				
Further r	eading	283				

Appendix 1 Abbreviations Appendix 2 Glossary

Appendix 3 Some useful values and symbols used	
to represent them	295
Appendix 4 Information and data on selected ecosystems	296
(1) Arctic tundra: Stordalen, Sweden	296
Further reading	297
(2) Boreal coniferous pine forest: Jädraås, Sweden	297
Further reading	297
(3) Temperate short grass prairie (steppe): Pawnee site,	
Colorado, USA	297
Further reading	298
(4) Temperate beech forest: Solling (Heinz Ellenberg),	
Germany	298
Further reading	298
(5) Temperate planted spruce forest: Skogaby, Sweden	298
Further reading	299
(6) Temperate coniferous rain forest: H.J. Andrews,	
Oregon, USA	299
Further reading	299
(7) Tropical savanna: Point Noire (Kondi), Congo	299
Further reading	300
(8) Tropical dry forest: Chamela, Mexico	300
Further reading	300
(9) Tropical rain forest: San Carlos, Venezuela	301
Further reading	301
References	304
Index	320

Colour plate section is found between pp. 174 and 175.