SOCIAL NETWORK ANALYSIS: METHODS AND APPLICATIONS

STANLEY WASSERMAN University of Illinois

KATHERINE FAUST University of South Carolina

Contents

List of Tables page	ge xxi
List of Illustrations	xxiv
Preface	xxix
Part I: Networks, Relations, and Structure	1
1 Social Network Analysis in the Social and Behavioral Sciences	3
1.1 The Social Networks Perspective	4
1.2 Historical and Theoretical Foundations	10
1.2.1 Empirical Motivations	11
1.2.2 Theoretical Motivations	13
1.2.3 Mathematical Motivations	15
1.2.4 In Summary	16
1.3 Fundamental Concepts in Network Analysis	17
1.4 Distinctive Features	21
1.5 Organization of the Book and How to Read It	22
1.5.1 Complexity	23
1.5.2 Descriptive and Statistical Methods	23
1.5.3 Theory Driven Methods	24
1.5.4 Chronology	24
1.5.5 Levels of Analysis	25
1.5.6 Chapter Prerequisites	26
1.6 Summary	27
2 Social Network Data	28
2.1 Introduction: What Are Network Data?	28
2.1.1 Structural and Composition Variables	29

2.1.2 Modes	29
2.1.3 Affiliation Variables	30
2.2 Boundary Specification and Sampling	30
2.2.1 What Is Your Population?	31
2.2.2 Sampling	33
2.3 Types of Networks	35
2.3.1 One-Mode Networks	36
2.3.2 Two-Mode Networks	39
2.3.3 Ego-centered and Special Dyadic Networks	41
2.4 Network Data, Measurement and Collection	43
2.4.1 Measurement	43
2.4.2 Collection	45
2.4.3 Longitudinal Data Collection	55
2.4.4 Measurement Validity, Reliability, Accuracy, Error	56
2.5 Data Sets Found in These Pages	59
2.5.1 Krackhardt's High-tech Managers	60
2.5.2 Padgett's Florentine Families	61
2.5.3 Freeman's EIES Network	62
2.5.4 Countries Trade Data	64
2.5.5 Galaskiewicz's CEOs and Clubs Network	65
2.5.6 Other Data	66
Part II: Mathematical Representations of Social Networks	67
3 Notation for Social Network Data	69
3.1 Graph Theoretic Notation	71
3.1.1 A Single Relation	71
3.1.2 OMultiple Relations	73
3.1.3 Summary	75
3.2 Sociometric Notation	77
3.2.1 Single Relation	79
3.2.2 Multiple Relations	81
3.2.3 Summary	83
3.3 OAlgebraic Notation	84
3.4 OTwo Sets of Actors	85
3.4.1 ØDifferent Types of Pairs	86
3.4.2 OSociometric Notation	87
3.5 Putting It All Together	89

		Contents	xi
4	Gra	phs and Matrices	92
	4.1	Why Graphs?	93
	4.2	Graphs	94
		4.2.1 Subgraphs, Dyads, and Triads	9 7
		4.2.2 Nodal Degree	100
		4.2.3 Density of Graphs and Subgraphs	101
		4.2.4 Example: Padgett's Florentine Families	103
		4.2.5 Walks, Trails, and Paths	105
		4.2.6 Connected Graphs and Components	109
		4.2.7 Geodesics, Distance, and Diameter	110
		4.2.8 Connectivity of Graphs	112
		4.2.9 Isomorphic Graphs and Subgraphs	117
		4.2.10 OSpecial Kinds of Graphs	119
	4.3	Directed Graphs	121
		4.3.1 Subgraphs – Dyads	124
		4.3.2 Nodal Indegree and Outdegree	125
		4.3.3 Density of a Directed Graph	129
		4.3.4 An Example	129
		4.3.5 Directed Walks, Paths, Semipaths	129
		4.3.6 Reachability and Connectivity in Digraphs	132
		4.3.7 Geodesics, Distance and Diameter	134
		4.3.8 OSpecial Kinds of Directed Graphs	134
		4.3.9 Summary	136
	4.4	Signed Graphs and Signed Directed Graphs	136
		4.4.1 Signed Graph	137
		4.4.2 Signed Directed Graphs	138
	4.5	Valued Graphs and Valued Directed Graphs	140
		4.5.1 Nodes and Dyads	142
		4.5.2 Density in a Valued Graph	143
		4.5.3 OPaths in Valued Graphs	143
		Multigraphs	145
		⊗Hypergraphs	146
	4.8	Relations	148
		4.8.1 Definition	148
		4.8.2 Properties of Relations	149
	4.9	Matrices	150
		4.9.1 Matrices for Graphs	150
		4.9.2 Matrices for Digraphs	152
		4.9.3 Matrices for Valued Graphs	153
		4.9.4 Matrices for Two-Mode Networks	154

4.9.5 OMatrices for Hypergraphs	154
4.9.6 Basic Matrix Operations	154
4.9.7 Computing Simple Network Properties	159
4.9.8 Summary	164
4.10 Properties	164
4.10.1 Reflexivity	164
4.10.2 Symmetry	165
4.10.3 Transitivity	165
4.11 Summary	165
Part III: Structural and Locational Properties	167
5 Centrality and Prestige	169
5.1 Prominence: Centrality and Prestige	172
5.1.1 Actor Centrality	173
5.1.2 Actor Prestige	174
5.1.3 Group Centralization and Group Prestige	175
5.2 Nondirectional Relations	177
5.2.1 Degree Centrality	178
5.2.2 Closeness Centrality	183
5.2.3 Betweenness Centrality	188
5.2.4 ØInformation Centrality	192
5.3 Directional Relations	198
5.3.1 Centrality	199
5.3.2 Prestige	202
5.3.3 A Different Example	210
5.4 Comparisons and Extensions	215
6 Structural Balance and Transitivity	220
6.1 Structural Balance	222
6.1.1 Signed Nondirectional Relations	223
6.1.2 Signed Directional Relations	228
6.1.3 OChecking for Balance	230
6.1.4 An Index for Balance	232
6.1.5 Summary	232
6.2 Clusterability	233
6.2.1 The Clustering Theorems	235
6.2.2 Summary	238
6.3 Generalizations of Clusterability	239

		Contents	xiii
		6.3.1 Empirical Evidence	239
		6.3.2 ORanked Clusterability	240
		6.3.3 Summary	242
	6.4	Transitivity	243
		Conclusion	247
7	Coh	esive Subgroups	249
	7.1	Background	250
		7.1.1 Social Group and Subgroup	250
		7.1.2 Notation	252
	7.2	Subgroups Based on Complete Mutuality	253
		7.2.1 Definition of a Clique	254
		7.2.2 An Example	254
		7.2.3 Considerations	256
	7.3	Reachability and Diameter	257
		7.3.1 <i>n</i> -cliques	258
		7.3.2 An Example	259
		7.3.3 Considerations	260
		7.3.4 n-clans and n-clubs	260
		7.3.5 Summary	262
	7.4	Subgroups Based on Nodal Degree	263
		7.4.1 k-plexes	265
		7.4.2 k-cores	266
	7.5	Comparing Within to Outside Subgroup Ties	267
		7.5.1 LS Sets	268
		7.5.2 Lambda Sets	269
	7.6	Measures of Subgroup Cohesion	270
	7.7	Directional Relations	273
		7.7.1 Cliques Based on Reciprocated Ties	273
		7.7.2 Connectivity in Directional Relations	274
		7.7.3 n-cliques in Directional Relations	275
	7.8	Valued Relations	277
		7.8.1 Cliques, <i>n</i> -cliques, and <i>k</i> -plexes	278
		7.8.2 Other Approaches for Valued Relations	282
	7.9	Interpretation of Cohesive Subgroups	283
	7.10	Other Approaches	284
		7.10.1 Matrix Permutation Approaches	284
		7.10.2 Multidimensional Scaling	287
		7.10.3 OFactor Analysis	290
	7.11	Summary	290

8	Affiliations and Overlapping Subgroups	291
	8.1 Affiliation Networks	291
	8.2 Background	292
	8.2.1 Theory	292
	8.2.2 Concepts	294
	8.2.3 Applications and Rationale	295
	8.3 Representing Affiliation Networks	298
	8.3.1 The Affiliation Network Matrix	298
	8.3.2 Bipartite Graph	299
	8.3.3 Hypergraph	303
	8.3.4 OSimplices and Simplicial Complexes	306
	8.3.5 Summary	306
	8.3.6 An example: Galaskiewicz's CEOs and Clubs	307
	8.4 One-mode Networks	307
	8.4.1 Definition	307
	8.4.2 Examples	309
	8.5 Properties of Affiliation Networks	312
	8.5.1 Properties of Actors and Events	312
	8.5.2 Properties of One-mode Networks	314
	8.5.3 Taking Account of Subgroup Size	322
	8.5.4 Interpretation	324
	8.6 🛇 Analysis of Actors and Events	326
	8.6.1	326
	8.6.2 Ocrrespondence Analysis	334
	8.7 Summary	342
Pa	art IV: Roles and Positions	345
9	Structural Equivalence	347
	9.1 Background	348
	9.1.1 Social Roles and Positions	348
	9.1.2 An Overview of Positional and Role Analysis	351
	9.1.3 A Brief History	354
	9.2 Definition of Structural Equivalence	356
	9.2.1 Definition	356
	9.2.2 An Example	357
	9.2.3 Some Issues in Defining Structural Equivalence	359
	9.3 Positional Analysis	361
	9.3.1 Simplification of Multirelational Networks	361

		Contents	xv
		9.3.2 Tasks in a Positional Analysis	363
	9.4	Measuring Structural Equivalence	366
		9.4.1 Euclidean Distance as a Measure of Structural	
		Equivalence	367
		9.4.2 Correlation as a Measure of Structural Equivalence	368
		9.4.3 Some Considerations in Measuring Structural	
		Equivalence	370
	9.5	Representation of Network Positions	375
		9.5.1 Partitioning Actors	375
		9.5.2 Spatial Representations of Actor Equivalences	385
		9.5.3 Ties Between and Within Positions	388
	9.6	Summary	391
10	Bloc	kmodels	394
~~		Definition	395
		Building Blocks	397
		10.2.1 Perfect Fit (Fat Fit)	398
		10.2.2 Zeroblock (Lean Fit) Criterion	399
		10.2.3 Oneblock Criterion	400
		10.2.4 α Density Criterion	400
		10.2.5 Comparison of Criteria	401
		10.2.6 Examples	401
		10.2.7 Valued Relations	406
	10.3	Interpretation	408
		10.3.1 Actor Attributes	408
		10.3.2 Describing Individual Positions	411
		10.3.3 Image Matrices	417
	10.4	Summary	423
11	Rela	tional Algebras	425
		Background	426
		Notation and Algebraic Operations	428
		11.2.1 Composition and Compound Relations	429
		11.2.2 Properties of Composition and Compound	
		Relations	432
	11.3	Multiplication Tables for Relations	433
		11.3.1 Multiplication Tables and Relational Structures	435
		11.3.2 An Example	439
	11.4	Simplification of Role Tables	442
		11.4.1 Simplification by Comparing Images	443

		11.4.2	445
	11.5	⊗Comparing Role Structures	449
		11.5.1 Joint Homomorphic Reduction	451
		11.5.2 The Common Structure Semigroup	452
		11.5.3 An Example	453
		11.5.4 Measuring the Similarity of Role Structures	457
	11.6	Summary	460
12		work Positions and Roles	461
	12.1	Background	462
		12.1.1 Theoretical Definitions of Roles and Positions	462
		12.1.2 Levels of Role Analysis in Social Networks	464
		12.1.3 Equivalences in Networks	466
		Structural Equivalence, Revisited	468
	12.3	Automorphic and Isomorphic Equivalence	469
		12.3.1 Definition	470
		12.3.2 Example	471
		12.3.3 Measuring Automorphic Equivalence	472
	12.4	Regular Equivalence	473
		12.4.1 Definition of Regular Equivalence	474
		12.4.2 Regular Equivalence for Nondirectional Relations	475
		12.4.3 Regular Equivalence Blockmodels	476
		12.4.4 OA Measure of Regular Equivalence	479
		12.4.5 An Example	481
	12.5	"Types" of Ties	483
		12.5.1 An Example	485
	12.6	Local Role Equivalence	487
		12.6.1 Measuring Local Role Dissimilarity	488
		12.6.2 Examples	491
	12.7	⊗Ego Algebras	494
		12.7.1 Definition of Ego Algebras	496
		12.7.2 Equivalence of Ego Algebras	497
		12.7.3 Measuring Ego Algebra Similarity	497
		12.7.4 Examples	499
,	12.8	Discussion	502

		Contents	xvii
Pa	rt V	: Dyadic and Triadic Methods	503
13	Dya	ds	505
	13.1	An Overview	506
	13.2	An Example and Some Definitions	508
	13.3	Dyads	510
		13.3.1 The Dyad Census	512
		13.3.2 The Example and Its Dyad Census	513
		13.3.3 An Index for Mutuality	514
		13.3.4 \bigotimes A Second Index for Mutuality	518
		13.3.5 OSubgraph Analysis, in General	520
	13.4	Simple Distributions	522
		13.4.1 The Uniform Distribution – A Review	524
		13.4.2 Simple Distributions on Digraphs	526
	13.5	Statistical Analysis of the Number of Arcs	528
		13.5.1 Testing	529
		13.5.2 Estimation	533
	13.6	⊗Conditional Uniform Distributions	535
		13.6.1 Uniform Distribution, Conditional on the Number	
		of Arcs	536
		13.6.2 Uniform Distribution, Conditional on the	
		Outdegrees	537
	13.7	Statistical Analysis of the Number of Mutuals	539
		13.7.1 Estimation	540
		13.7.2 Testing	542
		13.7.3 Examples	543
	13.8	Other Conditional Uniform Distributions	544
		13.8.1 Uniform Distribution, Conditional on the Indegrees	545
		13.8.2 The $U MAN$ Distribution	547
		13.8.3 More Complex Distributions	550
	13.9	Other Research	552
-	13.10	Conclusion	555
14	Tria	ds	556
	14.1	Random Models and Substantive Hypotheses	558
	14.2	Triads	559
		14.2.1 The Triad Census	564
		14.2.2 The Example and Its Triad Census	574
	14.3	Distribution of a Triad Census	575
		14.3.1 \bigotimes Mean and Variance of a k-subgraph Census	576

		14.3.2 Mean and Variance of a Triad Census	579
		14.3.3 Return to the Example	581
		14.3.4 Mean and Variance of Linear Combinations of a	
		Triad Census	582
		14.3.5 A Brief Review	584
	14.4	Testing Structural Hypotheses	585
		14.4.1 Configurations	585
		14.4.2 From Configurations to Weighting Vectors	590
		14.4.3 From Weighting Vectors to Test Statistics	592
		14.4.4 An Example	595
		14.4.5 Another Example — Testing for Transitivity	596
	14.5	Generalizations and Conclusions	598
	14.6	Summary	601
P۹	rt V	I: Statistical Dyadic Interaction Models	603
14	11 U V	1. Studistical Dyadic Interaction Filodets	002
15	Stat	istical Analysis of Single Relational Networks	605
	15.1	Single Directional Relations	607
		15.1.1 The Y-array	608
		15.1.2 Modeling the Y-array	612
		15.1.3 Parameters	619
		15.1.4 \bigotimes Is p_1 a Random Directed Graph Distribution?	633
		15.1.5 Summary	634
	15.2	Attribute Variables	635
		15.2.1 Introduction	636
		15.2.2 The W-array	637
		15.2.3 The Basic Model with Attribute Variables	640
		15.2.4 Examples: Using Attribute Variables	646
	15.3	Related Models for Further Aggregated Data	649
		15.3.1 Strict Relational Analysis — The V-array	651
		15.3.2 Ordinal Relational Data	654
	15.4	ONondirectional Relations	656
		15.4.1 A Model	656
		15.4.2 An Example	657
		\bigotimes Recent Generalizations of p_1	658
	15.6	Single Relations and Two Sets of Actors	662
		15.6.1 Introduction	662
		15.6.2 The Basic Model	663
		15.6.3 Aggregating Dyads for Two-mode Networks	664

		Contents	xix
	15.7	Computing for Log-linear Models	665
		15.7.1 Computing Packages	666
		15.7.2 From Printouts to Parameters	671
	15.8	Summary	673
16	Stoc	hastic Blockmodels and Goodness-of-Fit Indices	675
	16.1	Evaluating Blockmodels	678
		16.1.1 Goodness-of-Fit Statistics for Blockmodels	679
		16.1.2 Structurally Based Blockmodels and Permutation	
		Tests	688
		16.1.3 An Example	689
	16.2	Stochastic Blockmodels	692
		16.2.1 Definition of a Stochastic Blockmodel	694
		16.2.2 Definition of Stochastic Equivalence	696
		16.2.3 Application to Special Probability Functions	697
		16.2.4 Goodness-of-Fit Indices for Stochastic Blockmodels	703
		16.2.5 OStochastic a posteriori Blockmodels	706
		16.2.6 Measures of Stochastic Equivalence	708
		16.2.7 Stochastic Blockmodel Representations	709
		16.2.8 The Example Continued	712
	16.3	Summary: Generalizations and Extensions	719
		16.3.1 Statistical Analysis of Multiple Relational Networks	719
		16.3.2 Statistical Analysis of Longitudinal Relations	721
Pa	rt V	II: Epilogue	725
		ire Directions	727
17		Statistical Models	727
		Generalizing to New Kinds of Data	729
	17.2	•	730
		17.2.1 Multiple Relations17.2.2 Dynamic and Longitudinal Network Models	
			730 731
	172	17.2.3 Ego-centered Networks Data Collection	731
		Sampling	731
		General Propositions about Structure	732
		Computer Technology	733
		Networks and Standard Social and Behavioral Science	733
	1/./	notworks and standard bostal and Denavioral belefice	155

xx Contents

Appendix A Computer Programs

Appendix B Data

738

735

References Name Index Subject Index List of Notation