

Meshfree Approximation Methods with MATLAB

Gregory E. Fasshauer

Illinois Institute of Technology, USA

Library 5232 Villigen PSI, Schweiz

Contents

Prej	face		vii				
1.	Intro	duction	1				
	11	Motivation: Scattered Data Interpolation in \mathbb{R}^{s}	2				
		1.1.1 The Scattered Data Interpolation Problem	2				
		1 1.2 Example: Interpolation with Distance Matrices	4				
	$1\ 2$	Some Historical Remarks	13				
2	Radial Basis Function Interpolation in MAILAB						
	21	Radial (Basis) Functions	17				
	$\frac{2}{2}2$	Radial Basis Function Interpolation	19				
3	Positive Definite Functions						
	31	Positive Definite Matrices and Functions	27				
	3.2	Integral Characterizations for (Strictly) Positive Definite					
		Functions	31				
		3 2.1 Bochner's Theorem	31				
		3 2 2 Extensions to Strictly Positive Definite Functions	32				
	33	Positive Definite Radial Functions	33				
4.	Exan	aples of Strictly Positive Definite Radial Functions	37				
	41	Example 1: Gaussians	37				
	$4\ 2$	Example 2: Laguerre-Gaussians	38				
	43	Example 3: Poisson Radial Functions	39				
	44	Example 4: Matérn Functions	41				
	45	Example 5: Generalized Inverse Multiquadrics	41				
	46	Example 6: Truncated Power Functions	42				
	47	Example 7: Potentials and Whittaker Radial Functions	43				
	48	Example 8: Integration Against Strictly Positive					
		Definite Kernels	45				

	$4\ 9$	Summary	45		
5	Completely Monotone and Multiply Monotone Functions				
	5 1 Completely Monotone Functions5 2 Multiply Monotone Functions				
6	Scattered Data Interpolation with Polynomial Precision				
	$\begin{array}{c} 6.1 \\ 6.2 \end{array}$	Interpolation with Multivariate Polynomials Example: Reproduction of Linear Functions Using	53		
	6.3	Gaussian RBFs Scattered Data Interpolation with More General Polynomial Precision	55 57		
	6.4	Conditionally Positive Definite Matrices and Reproduction of Constant Functions	59		
7.	Conditionally Positive Definite Functions				
	$\frac{7.1}{7.2}$	Conditionally Positive Definite Functions Defined Conditionally Positive Definite Functions and Generalized	63		
		Fourier Transforms	65		
8.	Examples of Conditionally Positive Definite Functions				
	8.1	Example 1: Generalized Multiquadrics	67		
	8.2	Example 2: Radial Powers	69		
	00	Example 5: 1 min Plate Splines	70		
9.	Conc	litionally Positive Definite Radial Functions	73		
	91 92	Conditionally Positive Definite Radial Functions and Completely Monotone Functions	73		
	93	Multiply Monotone Functions Some Special Properties of Conditionally Positive Definite	75		
		Functions of Order One	76		
10.	Miscellaneous Theory: Other Norms and Scattered Data Fitting on Manifolds				
	10_1	Conditionally Positive Definite Functions and <i>p</i> -Norms	79		
	$10\ 2$	Scattered Data Fitting on Manifolds	83		
	10.3	Remarks	83		
11.	Comp	pactly Supported Radial Basis Functions	85		
	$11.1 \\ 11.2$	Operators for Radial Functions and Dimension Walks Wendland's Compactly Supported Functions	85		
	4	remaining a compactly pupperted remembers	Õ(

	11.3	Wu's Compactly Supported Functions	88	
	11.4	Oscillatory Compactly Supported Functions	90	
	$11\ 5$	Other Compactly Supported Radial Basis Functions	92	
12	Interpolation with Compactly Supported RBFs in MATLAB			
	$12\ 1$	Assembly of the Sparse Interpolation Matrix	95	
	$12\ 2$	Numerical Experiments with CSRBFs	99	
13	Repr Stric	oducing Kernel Hilbert Spaces and Native Spaces for tly Positive Definite Functions	103	
	13.1	Reproducing Kernel Hilbert Spaces	103	
	13.2	Native Spaces for Strictly Positive Definite Functions	105	
	$13\ 3$	Examples of Native Spaces for Popular Radial Basic Functions	108	
14	The	Power Function and Native Space Error Estimates	111	
	$14\ 1$	Fill Distance and Approximation Orders	111	
	14.2	Lagrange Form of the Interpolant and Cardinal		
		Basis Functions	112	
	14.3	The Power Function	115	
	$14\ 4$	Generic Error Estimates for Functions in $\mathcal{N}_{\Phi}(\Omega)$	117	
	14.5	Error Estimates in Terms of the Fill Distance	119	
15.	Refin	ed and Improved Error Bounds	125	
	$15\ 1$	Native Space Error Bounds for Specific Basis Functions	125	
		15.1.1 Infinitely Smooth Basis Functions	125	
		15.1.2 Basis Functions with Finite Smoothness	126	
	$15\ 2$	Improvements for Native Space Error Bounds	127	
	15.3	Error Bounds for Functions Outside the Native Space	128	
	15.4	EIIOI Bounds for Stationary Approximation	130	
	15.5	Convergence with Respect to the Shape Parameter	132	
	$15\ 6$	Polynomial Interpolation as the Limit of RBF Interpolation	133	
16	Stabi	lity and Trade-Off Principles	135	
	$16\ 1$	Stability and Conditioning of Radial Basis Function Interpolants	135	
	$16\ 2$	Trade-Off Principle I: Accuracy vs Stability	138	
	$16\ 3$	Trade-Off Principle II: Accuracy and Stability vs. Problem Size	140	
	16.4	Trade-Off Principle III: Accuracy vs Efficiency	140	
17.	Nume	erical Evidence for Approximation Order Results	141	
	17.1	Interpolation for $\varepsilon \to 0$	141	
		1711 Choosing a Good Shape Parameter via Trial and Error	142	

		17.1.2 The Power Function as Indicator for a Good Shape	140
		1712 Chaosing a Cood Share Decementar via Chaos Multidation	142
		17.1.4 The Contour Dadé Algorithm	140
		17.1.5 Summer	101
	17.9	Non stationary Interpolation	152
	172	Stationary Interpolation	155
	1(0	Stationary Interpolation	199
18	The	159	
	$18\ 1$	The Connection to Optimal Recovery	159
	18.2	Orthogonality in Reproducing Kernel Hilbert Spaces	160
	$18\ 3$	Optimality Theorem I	162
	$18 \ 4$	Optimality Theorem II	163
	18.5	Optimality Theorem III	164
		• · ·	
19.	Least	Squares RBF Approximation with MATLAB	165
	191	Optimal Recovery Revisited	165
	$19\ 2$	Regularized Least Squares Approximation	166
	$19\ 3$	Least Squares Approximation When BBF Centers Differ from	100
		Data Sites	168
	19.4	Least Squares Smoothing of Noisy Data	170
20.	Theor	ry for Least Squares Approximation	177
	$20 \ 1$	Well-Posedness of RBF Least Squares Approximation	177
	20.2	Error Bounds for Least Squares Approximation	179
21.	Adap	181	
	21.1	Adaptive Least Squares using Knot Insertion	181
	$21\ 2$	Adaptive Least Squares using Knot Removal	184
	21.3	Some Numerical Examples	188
			100
22	Movir	ng Least Squares Approximation	191
	22.1	Discrete Weighted Least Squares Approximation	191
	22.2	Standard Interpretation of MLS Approximation	192
	22.3	The Backus-Gilbert Approach to MLS Approximation	194
	22.4	Equivalence of the Two Formulations of MLS Approximation	198
	22.5	Duality and Bi-Orthogonal Bases	199
	22.6	Standard MLS Approximation as a Constrained Quadratic	
		Optimization Problem	202
	22.7	Remarks	202
23.	Exam	ples of MLS Generating Functions	205

	$23\ 1\ 23\ 2$	Shepard's Method MLS Approximation with Nontrivial Polynomial Reproduc	tion .	$\begin{array}{c} 205 \\ 207 \end{array}$
24	MLS	Approximation with MATLAB		211
	$24\ 1\ 24\ 2\ 24\ 3$	Approximation with Shepard's Method MLS Approximation with Linear Reproduction Plots of Basis-Dual Basis Pairs		$211 \\ 216 \\ 222$
25	Error	Bounds for Moving Least Squares Approximation		225
	$25\ 1$	Approximation Order of Moving Least Squares		225
26	Appr	oximate Moving Least Squares Approximation		229
	$26\ 1$ $26\ 2$ $26\ 3$	High-order Shepard Methods via Moment Conditions Approximate Approximation Construction of Generating Functions for Approximate MI Approximation	S	229 230 232
07	Nī			007
27	Nume	University Emeriments for Approximate MLS Approximation		231
	27.1 27.2	Bivariate Experiments		$\frac{237}{241}$
28	Fast I	Fourier Transforms		243
	28 1 28 2	NFFT Approximate MLS Approximation via Non-uniform Fast Fo Transforms	ourier	$\begin{array}{c} 243 \\ 245 \end{array}$
29.	Partit	ion of Unity Methods		249
	$29\ 1$	Theory		249
	$29\ 2$	Partition of Unity Approximation with MATLAB		251
30.	Аррго	ximation of Point Cloud Data in 3D		255
	$30\ 1$	A General Approach via Implicit Surfaces		255
	30 2 30 3	An Illustration in 2D A Simplistic Implementation in 3D via Partition of Unity		257
		Approximation in MATLAB		260
31.	Fixed	Level Residual Iteration		265
	$31\ 1$	Iterative Refinement		265
	$31\ 2$	Fixed Level Iteration		267
	$31\ 3$	Modifications of the Basic Fixed Level Iteration Algorithm		269
	314	Iterated Approximate MLS Approximation in MAILAB		270
	31.9	Iterated Shepard Approximation	•	274

32.	2. Multilevel Iteration				
	 32.1 Stationary Multilevel Interpolation 32.2 A MAILAB Implementation of Stationary Multilevel Interpolation 	277			
	32.3 Stationary Multilevel Approximation	219			
	32.4 Multilevel Interpolation with Globally Supported RBFs	287			
33	Adaptive Iteration	291			
	33 1 A Greedy Adaptive Algorithm33 2 The Faul-Powell Algorithm	291 298			
34	Improving the Condition Number of the Interpolation Matrix 303				
	34.1 Preconditioning: Two Simple Examples	304			
	34.2 Early Preconditioners	305			
	34.3 Preconditioned GMRES via Approximate Cardinal Functions	309			
	34.4 Change of Basis 34.5 Effect of the "Better" Basis on the Condition Number of the	311			
	Interpolation Matrix	314			
	34.6 Effect of the "Better" Basis on the Accuracy of the Interpolant	316			
35	Other Efficient Numerical Methods	321			
	35.1 The Fast Multipole Method	321			
	35.2 Fast Tree Codes	327			
	35.3 Domain Decomposition	. 331			
36	Generalized Hermite Interpolation	333			
	36 1 The Generalized Hermite Interpolation Problem	333			
	36.2 Motivation for the Symmetric Formulation	335			
37	RBF Hermite Interpolation in MAILAB	339			
38	Solving Elliptic Partial Differential Equations via RBF Collocation	345			
	381 Kansa's Approach	345			
	38.2 An Hermite-based Approach	348			
	38.3 Error Bounds for Symmetric Collocation	349			
	38 4 Other Issues	350			
39.	Non-Symmetric RBF Collocation in MAILAB	353			
	39.1 Kansa's Non-Symmetric Collocation Method	353			
40	Symmetric RBF Collocation in MATLAB				

	40 1	Symmetric Collocation Method	365		
	40 2	Collocation Methods	372		
41	Collo	cation with CSRBFs in MAILAB	375		
	41 1 41 2	Collocation with Compactly Supported RBFs Multilevel RBF Collocation	$\frac{375}{380}$		
42	Using	Radial Basis Functions in Pseudospectral Mode	387		
	$\begin{array}{c} 42.1 \\ 42.2 \\ 42.3 \\ 42.4 \\ 42.5 \\ 42.6 \end{array}$	Differentiation Matrices PDEs with Boundary Conditions via Pseudospectral Methods A Non-Symmetric RBF-based Pseudospectral Method A Symmetric RBF-based Pseudospectral Method A Unified Discussion Summary	388 390 391 394 396 398		
43	RBF-PS Methods in MAILAB				
	43 1	Computing the RBF-Differentiation Matrix in MAILAB 43.1.1 Solution of a 1-D Transport Equation	$\begin{array}{c} 401 \\ 403 \end{array}$		
	43.2	Use of the Contour-Padé Algorithm with the PS Approach 43.2.1 Solution of the 1D Transport Equation Revisited	$\begin{array}{c} 405 \\ 405 \end{array}$		
	$43\ 3$	Computation of Higher-Order Derivatives 43.3 1 Solution of the Allen-Cahn Equation	$\begin{array}{c} 407 \\ 409 \end{array}$		
	$\begin{array}{c} 43.4\\ 43.5\end{array}$	Solution of a 2D Helmholtz Equation Solution of a 2D Laplace Equation with Piecewise Boundary	411		
	$43 \ 6$	Conditions	$\frac{415}{416}$		
44.	\mathbf{RBF}	Galerkin Methods	419		
	44 1	An Elliptic PDE with Neumann Boundary Conditions	419		
	$44\ 2$	A Convergence Estimate	420		
	$44\ 3$	A Multilevel RBF Galerkin Algorithm	421		
45	RBF	Galerkin Methods in MATLAB	423		
Apı	oendix	A Useful Facts from Discrete Mathematics	427		
	A 1	Halton Points	427		
	A 2	kd-Trees	428		
App	pendix	B Useful Facts from Analysis	431		
	B 1	Some Important Concepts from Measure Theory	431		
	B .2	A Brief Summary of Integral Transforms	432		

	B.3	The So	chwartz Space and the Generalized Fourier Transform	433
App	endix	C Ado	litional Computer Programs	435
	C 1	MATL	AB Programs	435
	C.2	Maple	Programs	440
App	endix	D Cat	alog of RBFs with Derivatives	443
	D.1	Generi	c Derivatives	443
	D 2	Formu	las for Specific Basic Functions	. 444
		D 2 1	Globally Supported, Strictly Positive Definite Functions	444
		D.22	Globally Supported, Strictly Conditionally Positive	
			Definite Functions of Order 1	445
		D 2.3	Globally Supported, Strictly Conditionally Positive	
			Definite Functions of Order 2	446
		D.2.4	Globally Supported, Strictly Conditionally Positive	
			Definite Functions of Order 3	446
		$D_{-}25$	Globally Supported, Strictly Conditionally Positive	
			Definite Functions of Order 4	447
		D 2 6	Globally Supported, Strictly Positive Definite and	
			Oscillatory Functions	447
		D 2.7	Compactly Supported, Strictly Positive Definite	
			Functions	448
Bibli	ograpi	hy		451
Inde:	x			491