Contents

Preface vii

1. Introduction 1
11 Motivation: Scattered Data Interpolation in \mathbb{R}^{s} 2
11.1 The Scattered Data Interpolation Problem 2
11.2 Example: Interpolation with Distance Matrices 4
12 Some Historical Remarks 13
2 Radial Basis Function Interpolation in MaILaB 17
21 Radial (Basis) Functions 17
2.2 Radial Basis Function Interpolation 19
3 Positive Definite Functions 27
3.1 Positive Definite Matrices and Functions 27
3.2 Integral Characterizations for (Strictly) Positive Definite Functions 31
32.1 Bochner's Theorem 31
32.2 Extensions to Strictly Positive Definite Functions 32
33 Positive Definite Radial Functions 33
2. Examples of Strictly Positive Definite Radial Functions 37
41 Example 1: Gaussians 37
42 Example 2: Laguerre-Gaussians 38
43 Example 3: Poisson Radial Functions 39
44 Example 4: Matérn Functions 41
45 Example 5: Gener alized Inverse Multiquadrics 41
46 Example 6: Truncated Power Functions 42
47 Example 7: Potentials and Whittaker Radial Functions 43
48 Example 8: Integration Against Strictly Positive Definite Kernels 45
51 Completely Monotone Functions 47
5.2 Multiply Monotone Functions 49
3. Scattered Data Interpolation with Polynomial Precision 53
6.1 Interpolation with Multivariate Polynomials 53
62 Example: Reproduction of Lineat Functions Using Gaussian RBFs 55
6.3 Scattered Data Interpolation with More General Polynomial Precision 57
6.4 Conditionally Positive Definite Matrices and Reproduction of Constant Functions 59
4. Conditionally Positive Definite Functions 63
$7 . \quad$ Conditionally Positive Definite Functions Defined 63
72 Conditionally Positive Definite Functions and Generalized Fourier Transforms 65
5. Examples of Conditionally Positive Definite Functions 67
8.1 Example 1: Generalized Multiquadrics 67
8.2 Example 2: Radial Powers 69
83 Example 3: Thin Plate Splines 70
6. Conditionally Positive Definite Radial Functions 73
91 Conditionally Positive Definite Radial Functions and Completely Monotone Functions 73
92 Conditionally Positive Definite Radial Functions and Multiply Monotone Functions 75
93 Some Special Properties of Conditionally Positive Definite Functions of Order One 76
7. Miscellaneous Theory: Other Norms and Scattered Data Fitting on Manifolds 79
101 Conditionally Positive Definite Functions and p-Norms 79
102 Scattered Data Fitting on Manifolds 83
10.3 Remarks 83
8. Compactly Supported Radial Basis Functions 85
11.1 Operators for Radial Functions and Dimension Walks 85
112 Wendland's Compactly Supported Functions 87
113 Wu's Compactly Supported Functions88
11.4 Oscillatory Compactly Supported Functions 90
115 Other Compactly Supported Radial Basis Functions 92
12 Interpolation with Compactly Supported RBFs in Matlab 95
121 Assembly of the Sparse Interpolation Matiix 95
122 Numerical Experiments with CSRBFs 99
13 Reproducing Kernel Hilbert Spaces and Native Spaces for Strictly Positive Definite Functions 103
131 Reproducing Kernel Hilbert Spaces 103
13.2 Native Spaces for Strictly Positive Definite Functions 105
133 Examples of Native Spaces for Popular Radial Basic Functions 108
14 The Power Function and Native Space Error Estimates 111
141 Fill Distance and Approximation Orders 111
142 Lagrange Form of the Interpolant and Cardinal Basis Functions 112
14.3 The Power Function 115
144 Generic Error Estimates for Functions in $\mathcal{N}_{\Phi}(\Omega)$ 117
14.5 Error Estimates in Terms of the Fill Distance 119
9. Refined and Improved Error Bounds 125
151 Native Space Error Bounds for Specific Basis Functions 125
15.11 Infinitely Smooth Basis Functions 125
1512 Basis Functions with Finite Smoothness 126
152 Improvements for Native Space Erior Bounds 127
153 Error Bounds for Functions Outside the Native Space 128
15.4 Eiror Bounds for Stationary Approximation 130
15.5 Convergence with Respect to the Shape Parameter 132
156 Polynomial Interpolation as the Limit of RBF Inter polation 133
16 Stability and Trade-Off Principles 135
161 Stability and Conditioning of Radial Basis Function Inter polants 135
162 Trade-Off Principle I: Accuracy vs Stability 138
163 Trade-Off Principle II: Accuracy and Stability vs. Problem Size 140
16.4 Trade-Off Principle III: Accuracy vs Efficiency 140
10. Numerical Evidence for Approximation Order Results 141
17.1 Interpolation for $\varepsilon \rightarrow 0$ 141
1711 Choosing a Good Shape Parameter via Trial and Eiror 142
17.12 The Power Function as Indicator for a Good Shape Parameter 142
171.3 Choosing a Good Shape Parameter via Cross Validation 146
171.4 The Contour-Padé Algorithm 151
17.15 Summary 152
172 Non-stationary Interpolation 153
173 Stationary Interpolation 155
18 The Optimality of RBF Interpolation 159
18.1 The Connection to Optimal Recovery 159
18.2 Orthogonality in Reproducing Kernel Hilbert Spaces 160
183 Optimality Theorem I 162
184 Optimality Theorem II 163
18.5 Optimality Theorem III 164
11. Least Squares RBF Approximation with Matlab 165
191 Optimal Recovery Revisited 165
192 Regularized Least Squares Approximation 166
193 Least Squares Appıoximation When RBF Centers Differ from Data Sites 168
19.4 Least Squares Smoothing of Noisy Data 170
12. Theory for Least Squares Approximation 177
201 Well-Posedness of RBF Least Squares Approximation 177
20.2 Error Bounds for Least, Squares Approximation 179
13. Adaptive Least Squares Approximation 181
21.1 Adaptive Least Squares using Knot Insertion 181
212 Adaptive Least Squares using Knot Removal 184
213 Some Numerical Examples 188
22 Moving Least Squares Appioximation 191
22.1 Discrete Weighted Least Squares Approximation 191
22.2 Standard Interpretation of MLS Approximation 192
223 The Backus-Gilbert Approach to MLS Approximation 194
224 Equivalence of the Two Formulations of MLS Approximation 198
22.5 Duality and Bi-Orthogonal Bases 199
22.6 Standard MLS Approximation as a Constrained Quadratic Optimization Problem 202
22.7 Remarks 202
14. Examples of MLS Generating Functions 205
231 Shepard's Method205
232 MLS Approximation with Nontrivial Polynomial Reproduction 207
15. MLS Approximation with MATLAB 211
241 Approximation with Shepard's Method 211
242 MLS Approximation with Linear Reproduction 216
243 Plots of Basis-Dual Basis Pairs 222
16. Error Bounds for Moving Least Squares Approximation 225
251 Approximation Order of Moving Least Squares 225
17. Approximate Moving Least Squares Approximation 229
261 High-order Shepard Methods via Moment Conditions 229
262 Approximate Approximation 230
263 Construction of Generating Functions for Approximate MLS Approximation 232
27 Numerical Experiments for Approximate MLS Approximation 237
27.1 Univariate Experiments 237
272 Bivariate Experiments 241
28 Fast Fourier Transforms 243
281 NFFT 243
282 Approximate MLS Approximation via Non-uniform Fast Fourier Transforms 245
18. Partition of Unity Methods 249
291 Theory 249
292 Partition of Unity Approximation with Matlab 251
19. Approximation of Point Cloud Data in 3D 255
301 A General Approach via Implicit Surfaces 255
302 An Illustration in 2D 257
303 A Simplistic Implementation in 3D via Partition of Unity Approximation in Mailab 260
20. Fixed Level Residual Iteration 265
311 Iterative Refinement 265
312 Fixed Level Iteration 267
313 Modifications of the Basic Fixed Level Iteration Algorithm 269
314 Iterated Approximate MLS Approximation in Mailab 270
315 Iterated Shepard Approximation 274
21. Multilevel Iteration277
32.1 Stationary Multilevel Interpolation 277
322 A Matlab Implementation of Stationary Multilevel Interpolation 279
323 Stationary Multilevel Approximation 283
324 Multilevel Interpolation with Globaily Supported RBFs 287
33 Adaptive Iteration 291
331 A Greedy Adaptive Algorithm 291
332 The Faul-Powell Algorithm 298
34 Improving the Condition Number of the Interpolation Matrix 303
34.1 Preconditioning: Two Simple Examples 304
342 Early Preconditioners 305
34.3 Preconditioned GMRES via Approximate Cardinal Functions 309
344 Change of Basis 311
34.5 Effect of the "Better" Basis on the Condition Number of the Interpolation Matrix 314
34.6 Effect of the "Better" Basis on the Accuracy of the Interpolant 316
35 Other Efficient Numerical Methods 321
351 The Fast Multipole Method 321
35.2 Fast Tree Codes 327
35.3 Domain Decomposition 331
36 Gener alized Hermite Interpolation 333
361 The Generalized Hermite Interpolation Problem 333
36.2 Motivation for the Symmetric Formulation 335
37 RBF Hermite Interpolation in MATLAB 339
38 Solving Elliptic Partial Differential Equations via RBF Collocation 345
381 Kansa's Approach 345
38.2 An Hermite-based Approach 348
38.3 Error Bounds for Symmetric Collocation 349
384 Other Issues 350
22. Non-Symmetric RBF Collocation in Matlab 353
39.1 Kansa's Non-Symmetric Collocation Method 353
40 Symmetric RBF Collocation in MATLAB 365401 Symmetric Collocation Method402 Summarizing Remarks on the Symmetric and Non-Symmetric
Collocation Methods 372
23. Collocation with CSRBFs in Mailab 375
411 Collocation with Compactly Supported RBFs 375
412 Multilevel RBF Collocation 380
24. Using Radial Basis Functions in Pseudospectral Mode 387
421 Differentiation Matrices 388
422 PDEs with Boundary Conditions via Pseudospectral Methods 390
423 A Non-Symmetric RBF-based Pseudospectial Method 391
424 A Symmetric RBF-based Pseudospectral Method 394
42.5 A Unified Discussion 396
426 Summary 398
43 RBF-PS Methods in MAilab 401
431 Computing the RBF-Differentiation Matrix in Mailab 401
43.11 Solution of a 1-D Transport Equation 403
432 Use of the Contour-Padé Algorithm with the PS Approach 405
4321 Solution of the 1D Transport Equation Revisited405
433 Computation of Higher-Order Derivatives 407
43.4 Solution of a 2D Helmholtz Equation 411
435 Solution of a 2D Laplace Equation with Piecewise Boundary Conditions 415
436 Summary 416 416
25. RBF Galerkin Methods 419
441 An Elliptic PDE with Neumann Boundary Conditions 419
442 A Convergence Estimate 420
443 A Multilevel RBF Galerkin Algorithm 421
26. RBF Galerkin Methods in Ma'tlab 423
Appendix A Useful Facts from Discrete Mathematics 427
A 1 Halton Points 427
A. $2 k d$-Trees 428
Appendix B Useful Facts from Analysis 431
B 1 Some Important Concepts from Measure Theory 431
B 2 A Brief Summary of Integral Transforms 432
B. 3 The Schwartz Space and the Generalized Fourier Transform 433
Appendix C Additional Computer Pıogiams 435
C 1 Mátlab Programs 435
C. 2 Maple Programs 440
Appendix D Catalog of RBFs with Derivatives 443
D 1 Generic Derivatives 443
D 2 Formulas for Specific Basic Functions 444
D 21 Globally Supported, Strictly Positive Definite Functions 444
D. 22 Globally Supported, Strictly Conditionally Positive Definite Functions of Order 1 445
D 2.3 Globally Supported, Strictly Conditionally Positive Definite Functions of Order 2 446
D. 2. 4 Globally Supported, Strictly Conditionally Positive Definite Functions of Order 3 446
D 25 Globally Supported, Strictly Conditionally Positive Definite Functions of Order 4 447
D 2.6 Globally Supported, Strictly Positive Definite and Oscillatory Functions 447
D 2.7 Compactly Supported, Strictly Positive Definite Functions 448
Bibliography 451
Index 491
