Social Sequence Analysis

Methods and Applications

BENJAMIN CORNWELL Cornell University

•

Contents

		of Figures	page xii
		of Tables	xv
	Pref		xvii
	Ack	nowledgment	xix
PAI	RT I.	INTRODUCTION	
1	Sequ	ence Analysis in the Social Sciences	3
	1.1	Timing and Context of the Book	4
	1.2		7
	1.3	Audience and Scope	9
		Related References	14
÷.	1.5	Plan of the Book	16
PAI	RT II.	THEORETICAL BACKGROUND	
2	The	oretical Foundations of Social Sequence Analysis	- 21
		What Are Social Sequences?	21
	2.2		22
	2.3	Why Social Sequences Matter	25
		Origins of Social Sequence Analysis Techniques	32
		2.4.1 Narrative Positivism	33
		2.4.2 The Relational Nature of Social Phenomena	36
		2.4.3 The Development of Whole-Sequence	
		Analysis Methods	38
		2.4.4 Pivotal Criticisms	41
	2.5		45
		2.5.1 Sequences as Networks	46
		2.5.2 Microsequence Analysis	52
	2.6	Looking Ahead	55

vii [.]

.

	RT III D TE(. SOCIAL SEQUENCE ANALYSIS CONCEPTS CHNIQUES	
3 Sequence Analysis Concepts and Data			59
5	3.1		59
	5.1	3.1.1 Positions	60
		3.1.2 Elements	60
		3.1.2 Elements 3.1.3 Substructures	61
		3.1.4 Subjects	62
	3.2	•	62
	5.2	3.2.1 Recurrence	63
		3.2.2 Ties and Multidimensionality	65
		3.2.3 Gaps	66
	3.3		
	5.5	3.3.1 Size	67 67
		3.3.1 Size 3.3.2 Boundary Specification	69
	3.4		
	5.4	3.4.1 Data Collection	70
			70
		3.4.2 Element-Position Sampling	73
	3.5	3.4.3 Units of Measure Data Used in This Book	74
	5.5		75
		3.5.1 The Survey of Health, Ageing, and Retirement	75
		in Europe (SHARE)	75
		3.5.2 The Correlates of War Global Trade Network	76
		3.5.3 The Davis, Gardner, and Gardner Deep	
		South Study	78
		3.5.4 The Multinational Time Use Study (MTUS)	79
		3.5.5 The American Time Use Survey (ATUS)	80
4	Dete	ecting Sequence Structure	83
	4.1		83
		4.1.1 Sequence Length	84
		4.1.2 Element Frequencies	84
۰.		4.1.3 n-grams	85
		4.1.4 Position Reports	85
	4.2		86
		4.2.1 Transition Matrices	86
c.		4.2.2 Markov Chains	91
	4.3	Sequential Connection	91
		4.3.1 Empirical Illustration: Gender Differences	71
		in the Parenthood-Stress Link	93
	4.4	Stationarity	94
	•••	4.4.1 Empirical Illustration: Stationarity in the	
		World System	96
	4.5	Spells	97
		o Ponto	11

Contents

		Homogeneity On Using Summary Statistics and Tests	98 99
	4.8		100
		4.8.1 Transition Bubble Graphs	100
		4.8.2 State Transition Diagrams	101
- 2 -		4.8.3 Sequence Index Plots	102
		4.8.4 State Distribution Graphs	104
		4.8.5 Tempograms	104
		4.8.6 Sequence-Network Diagrams	105
		4.8.7 On the Use of Color and Grayscale	105
	4.9		108
5	Who	ole-Sequence Comparison Methods	109
	5.1	Sequence Alignment	110
		5.1.1 Sequence Alignment Operations	110
		5.1.2 Operation Costs and Distance	111
	5.2	Classical Optimal Matching (OM)	111
		5.2.1 Finding the Optimal Solution	113
		5.2.2 The Needleman–Wunsch Algorithm	114
	5.3	Basic Operation Cost Regimes	115
		5.3.1 Levenshtein Distance	115
		5.3.2 Levenshtein II Distance	115
		5.3.3 Hamming Distance	116
	5.4	Considerations in Setting Operation Costs	116
		5.4.1 Order versus Timing	116
· · ·		5.4.2 Time Warping	118
. :	5.5		119
		5.5.1 Theory/Method Fit	120
		5.5.2 Arbitrary Operation Costs	120
. :	5.6	Improvements on Classical OM	122
7 13		5.6.1 Variable Substitution Costs	122
		5.6.2 Distance Normalization	124
		5.6.3 Reference Sequence Comparison	125
		5.6.4 Spell-Adjusted Distances	126
		5.6.5 The Dynamic Hamming Method	127
	5.7		129
		5.7.1 Hierarchical Cluster Analysis	130
		5.7.2 Identifying Sequence Classes	133
		5.7.3 Assessing Validity and Reliability	136
i		5.7.4 Describing Sequence Classes	139
	5.8	Recent Advances in Sequence Comparison	143
		5.8.1 Multidimensional Sequence Analysis	144
		5.8.2 Two-Stage Optimal Matching (2SOM) Analysis	146
7 i ,		5.8.3 Transition Sequence Analysis	147

ix

		5.8.4 Nonalignment Techniques	148
		5.8.5 Beyond Cluster Analysis	150
DAI	RT IV.	NEW DIRECTIONS IN SOCIAL SEQUENCE	
	ALYSI	-	
6		vork Methods for Sequence Analysis	155
0	6.1	Theoretical Rationale	155
	0.1	6.1.1 Networks of Sequences	156
		6.1.2 Sequences as Bases of Affiliations	160
	6.2	Network Concepts and Terms	163
	0.2	6.2.1 Network Matrices and Components	163
		6.2.2 Directed and Undirected Networks	164
		6.2.3 One- and Two-Mode Networks	165
		6.2.4 Subject Comembership and Element Overlap	165
1	6.3	Sequence-Network Construction	167
	0.0	6.3.1 Nonrecurrent Sequence Networks	167
		6.3.2 Recurrent Sequence Affiliation Networks	170
		6.3.3 Directed Sequence Networks	171
		6.3.4 Multidimensional Sequence Networks	172
	6.4	Visualization	172
		6.4.1 Relationships among Subjects	173
		6.4.2 Two-Mode Ordered Event Networks	174
1.1		6.4.3 Two-Mode Recurrent Sequences	176
1		6.4.4 Directed Sequence Networks	179
	6.5		184
	6.6	Identification of Subject/Element Subsets	189
		6.6.1 Subsets in Sequence Affiliation Networks	190
		6.6.2 Element Subsets in Directed Sequence Networks	193
		6.6.3 Sequence Motifs	195
	6.7	Event Structure Analysis	196
		Statistical Network Models for Sequential Events	200
		6.8.1 Exponential Random Graph (p*) Models	200
		6.8.2 ERGMs for Ordered Nonrecurrent Sequence	
		Networks	201
	6.9	Dynamic Sequence Networks	202
		6.9.1 Subject- and Element-Level Change	203
		6.9.2 Sequence Subset Evolution	206
		6.9.3 Whole Sequence-Network Evolution	207
	6.10	Conclusion	209
	Soci	al Microsequence Analysis	210
	7.1	An Exemplary Sequence Context	211
	7.2	The Elements of Social Microsequences	214
		7.2.1 Relationship to Microinteraction Sequences	215
		·····	

Contents

		7.2.2 Elements and Positions	215
		7.2.3 Data Collection and Availability	216
	7.3	Nonnetwork Sequence Approaches	217
		7.3.1 OM Sequence Classification	220
		7.3.2 Transition and Switching Analysis	222
	7.4	Sequence-Network Approaches	226
		7.4.1 Synchrony	227
		7.4.2 Measurement of Synchrony	230
		7.4.3 Identifying Sources of Synchrony	238
		7.4.4 Routine	241
		7.4.5 Measurement and Visualization of Routine	244
	7.5	Next Steps	251
PAF	кт V.	CONCLUSIONS	
8	The	Promise of Social Sequence Analysis	255
	8.1		256
	8.2	Future Research	257
		8.2.1 Routine and Routinization	257
		8.2.2 Sequence Networks, Network Sequences	258
		8.2.3 Sequential Statistical Inference	259
		8.2.4 Data Collection	261
	App	endix A Recent Whole-Sequence Pattern Analyses	263
· :	App	endix B Linkage Criteria for Agglomerative	
	Ĥ	ierarchical Clustering	270
	Refe	rences	275
	Inde		303

xi

Figures

,

1.1	How to read this book	page 12
4.1	Frequency state transition matrix (N)	87
4.2	Probability state transition matrix (P)	88
4.3	Frequency state transition matrix for SHARELIFE life events data	90
4.4	Probability state transition matrix for SHARELIFE life events data	90
4.5	Transition bubble graph showing probabilities of first-time life-course transitions among SHARELIFE	
1.2	respondents $(N = 2, 191)$	101
4.6	State transition diagram graph showing sequential relationships among first-time life-course events among	
	SHARELIFE respondents ($N = 2,191$)	102
4.7	Sequence index plot showing the number of SHARELIFE respondents ($N = 2,191$) who reported experiencing first-time life-course events in different	
	sequence orders	103
4.8	State distribution graph showing the percent of SHARELIFE respondents ($N = 2,191$) reporting a given	105
	element at each sequence position	105
4.9	Sequence index plot of life event sequences from	
	Figure 4.7 in grayscale	106
4.10	Grayscale sequence index plot of life event sequences	
	from Figure 4.9 stretched vertically	107
5.1	Frequency state transition matrix for world-system positions	123
5.2	Dendrogram for hierarchical clustering of 42 unique world-system-position sequences from 129 countries	123
	between 1967 and 2006	133

Figures

5.3	Line graph showing the relationship between the number of clusters at given dissimilarity thresholds in the hierarchical clustering of world-system-position sequences	135
5.4	Tempograms showing the proportions of workers who were working at specific time points throughout the day in five weekday clusters, based on analysis of data on 8,997 individuals from the 2008–2010 American Time Use Surveys	141
5.5	Sequence index plots showing sequences of the 129 countries in each of the five world-system-position clusters	143
6.1	Narrative network showing the structure of the identity history of a Nazi	159
6.2	Affiliation matrix (A) showing women's involvement in different events, as reported in the <i>Deep South</i> study	168
6.3	Comembership matrix (N) showing overlap between women with respect to involvement in different events in the Deet South ender	169
6.4	the <i>Deep South</i> study Network showing the strengths of relationships among the women in the Davis, Gardner, and Gardner <i>Deep</i>	
6.5	<i>South</i> study Bipartite network showing which events were attended	174
	by which of the women in the Deep South study	175
6.6 6.7	Hypothetical two-mode sequence network Two-mode sequence network depicting activity sequences of two parents and their two children between 5 P.M. and	177
6.8	midnight on a Wednesday evening in October 2000 Annotated directed activity sequence network for two parents and their two children between 5 P.M. and	178
6.9	midnight on a Wednesday evening in October 2000 Node-free, variable-path-width depiction of the activity	180
6.10	sequences of a U.K. family Colorized variable-path-width depiction of the activity sequences of a U.K. family	182 183
6.11	Directed activity sequence network for two parents and their two children between 5 P.M. and midnight on a Wednesday evening in October 2000, with	105
6.12	time-equivalent position-elements tiled along the x-axis Overview of useful structural measures for two-mode	184
6.13	sequence networks Overview of useful structural measures for one-mode	186
	sequence networks	187

•

.

xiv Figures

.

6.1		
6.1		192
	connections among elements of the labor struggle in	
	the meatpacking industry during the Reagan era	199
6.1		204
6.1		
	sequence network, 5:00-8:00 P.M.	206
7.1	Annotated microsequence diagram showing how one	
	woman spent the day on a Monday in May 2011	219
7.2	Tempograms showing the percent of respondents in	
	the 2003–2011 ATUS who reported different types of	
	contact at each 5-minute interval between 6 A.M. and	
	midnight, shown separately for each of five clusters	
	(N = 2,853)	221
7.3	1 ,	
	different types of social contacts in a single workday	
	among working mothers in the 2003-2011 ATUS	
	(N = 4,658)	226
7.4		
	between different types of social contacts in a single	
	workday among working fathers in the 2003–2011	0 0 (
	ATUS ($N = 6,752$)	226
7.5		
	Spanish Daily Sequence Network	237
7.6	1 01	
	synchrony in Spain in 2003 (uncommon transitions not	240
	shown)	240
7.7		
	of routine (in minutes) between pairs of weekdays	
	among respondents in the 2005 Time Use Survey of the Nichards $(N = 1.807)$	250
D 1	Netherlands ($N = 1,807$)	230
B.1		
	considered given different linkage criteria for merging separate clusters in hierarchical clustering	271
	separate clusters in merarcinear clustering	2/1

Tables

4.1	Transition matrices showing frequency of transition from having first child to experiencing first period of major stress among parents in the SHARELIFE data	b.ccc 02
4.2	Transition matrices showing movement within	page 93
7.4	the world system between 1967–1986 and 1987–2006	96
5.1	The relationship between the operation cost regime and the emphasis on features being used as a basis for	
	sequence comparison	118
5.2	Country membership in the five world-system clusters	144
7.1	Extent of interpersonal and generalized synchrony in individuals' activity sequences as reported in the 2002–2003 Spanish Time Use Survey (in minutes and percent), by socio demographic characteristics	
	(N = 20,136)	234
7.2	Extent of routine in individuals' activity sequences as reported in the 2005 Time Use Survey of the	
	Netherlands (in minutes and percent), by socio	240
	demographic characteristics ($N = 1,807$)	249
A.1	Studies that have analyzed whole-sequence patterns	264
	using OM and other methods since 2000	264