# Textbook of Neural Repair and Rehabilitation

### Volume I — Neural Repair and Plasticity

#### **Second Edition**

Edited by

#### **Michael E. Selzer**

Director, Shriners Hospitals Pediatric Research Center and Professor of Neurology, Temple University School of Medicine, Philadelphia, PA, USA

#### **Stephanie Clarke**

Professor and Head of Neuropsychology and Neurorehabilitation, Service de Neuropsychologie et de Neuroréhabilitation, CHUV, Lausanne, Switzerland

#### Leonardo G. Cohen

Chief of the Human Cortical Physiology Section and the Stroke Rehabilitation Clinic, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA

#### Gert Kwakkel

Professor in Neurorehabilitation, Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam, the Netherlands

#### **Robert H. Miller**

Professor, Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA



### **Contents (Volume I – Neural Repair and Plasticity)**

Contributor affiliations ix Preface xvii Introduction to Neural Repair and Rehabilitation xviii

- Section 1 Neural plasticity: cellular and molecular mechanisms of neural plasticity
- Degenerative changes and reactive growth responses of neurons following denervation and axotomy: historical concepts and their modern embodiments 1 Oswald Steward
- Learning and memory: basic principles and model systems 22
   Kimberly M. Christian, Andrew M. Poulos, and Richard F. Thompson
- Short-term plasticity: facilitation, augmentation, potentiation, and depression 36 Gavriel David and Ellen Barrett
- 4. Long-term potentiation and long-term depression 50 Gareth Thomas and Richard L. Huganir
- Cellular and molecular mechanisms of associative and nonassociative learning 63 John H. Byrne, Diasinou Fioravante, and Evangelos G. Antzoulatos

### Section 2 – Functional plasticity in the central nervous system

- Plasticity of mature and developing somatosensory systems 75 Jon H. Kaas and Hui-Xin Qi
- Activity-dependent plasticity in the intact spinal cord 83 Jonathan R. Wolpaw and Aiko K. Thompson
- Plasticity of cerebral motor functions: implications for repair and rehabilitation 99 Randolph J. Nudo
- Plasticity in visual connections: retinal ganglion cell axonal development and regeneration 114 Martin Munz, Edward S. Ruthazer, and Kurt Haas

- 10. **Plasticity in auditory functions** 125 Josef P. Rauschecker
- 11. **Cross-modal plasticity in the visual system** 140 Krishnankutty Sathian

### Section 3 – Plasticity after injury to the central nervous system

- 12. The role of extracellular matrix in plasticity in the spinal cord 155 Melissa R. Andrews, Difei Wang, Chin Lik Tan, and James W. Fawcett
- Spinal plasticity underlying the recovery of locomotion after injury 166
   Serge Rossignol, Brian J. Schmidt, and Larry M. Jordan
- 14. Cellular mechanisms of plasticity after brain lesions 196S. Thomas Carmichael
- 15. **Pathophysiology and plasticity in cerebral palsy** 211 Wenbin Deng and Frances E. Jensen
- 16. Noninvasive brain stimulation in cognitive rehabilitation: guiding plasticity after injury to the central nervous system 218 Anna-Katharine Brem, Jared C. Horvath, and Alvaro Pascual-Leone
- 17. From bench to bedside: influence of theories of plasticity on human neurorehabilitation 240 Agnes Floel and Leonardo G. Cohen

### Section 4 – Neural repair: basic cellular and molecular processes

- Neuronal death and rescue: neurotrophic factors and anti-apoptotic mechanisms 255 Thomas W. Gould and Carol Milligan
- 19. **Axon degeneration and rescue** 274 Erika Timar and Ahmet Höke

- Adult neurogenesis and neural precursors, progenitors, and stem cells in the adult central nervous system 283 Jeffrey D. Macklis and Gerd Kempermann
- 21. Axon guidance during development and regeneration 301Simon W. Moore and Timothy E. Kennedy
- 22. **Synaptogenesis** 317 Matthew S. Kayser and Matthew B. Dalva

#### Section 5 – Determinants of regeneration in the injured nervous system

- 23. Non-mammalian models of nerve regeneration 329 Jennifer Morgan and Michael Shifman
- 24. **Myelin-associated axon growth inhibitors** 339 Binhai Zheng and Karim Fouad
- 25. Inhibitors of axonal regeneration 349 Marco Domeniconi, Tim Spencer, and Marie T. Filbin
- 26. Glial development and axon regeneration 367 Robert H. Miller
- 27. Effects of the glial scar and extracellular matrix molecules on axon regeneration 376 Himanshu Sharma, Bradley Lang, and Jerry Silver
- 28. The role of the inflammatory response in central nervous system injury and regeneration 392 Charbel E-H. Moussa
- 29. Neurotrophin repair of spinal cord damage 400 Vanessa S. Boyce, Joel M. Levine, and Lorne M. Mendell
- 30. Intraneuronal determinants of axon regeneration 413Toby A. Ferguson, Michael E. Selzer, and Zhigang He

### Section 6 – Promotion of regeneration in the injured nervous system

 Cellular replacement in spinal cord injury 435
 Joseph F. Bonner, Angelo C. Lepore, Mahendra S. Rao, and Itzhak Fischer

- 32. Dysfunction and recovery in demyelinated and dysmyelinated axons 457Stephen G. Waxman
- 33. Role of Schwann cells in peripheral nerve regeneration 472Young-Jin Son and Wesley J. Thompson
- 34. Transplantation of Schwann cells and olfactory ensheathing cells as a therapeutic strategy in spinal cord injury 496 Jeffery D. Kocsis and Mary Bartlett Bunge
- 35. **Trophic factor delivery by gene therapy** 514 Christopher Trimby and George M. Smith
- 36. Assessment of sensorimotor function after experimental spinal cord injury and repair 529 Michael S. Beattie and Jacqueline C. Bresnahan

## Section 7 – Translational research: application to human neural injury

- 37. **Biomimetic design of neural prostheses** 541 Joseph J. Pancrazio and P. Hunter Peckham
- 38. **Brain responses to neural prostheses** 554 Jeffrey R. Capadona and Paul D. Marasco
- 39. **Brain-computer interfaces** 565 Jonathan R. Wolpaw and Chadwick B. Boulay
- 40. Intracranial brain-computer interfaces for communication and control 577 Beata Jarosiewicz and Leigh R. Hochberg
- 41. **Stem cell therapies for brain disorders** 586 Lianhua Bai, Brandon Delia, Jordan Hecker, and Robert H. Miller
- 42. Understanding motor recovery and compensation in neurorehabilitation 599 Mindy F. Levin

Index 609

See color plate section in between pages 328 and 329.

### **Contents (Volume II – Medical Neurorehabilitation)**

Contributor affiliations ix Preface xvii Introduction to Neural Repair and Rehabilitation xviii

Section 1 — Technology of neurorehabilitation: outcome measurement and diagnostic technology

- 1. Clinical trials in neurorehabilitation 1 Bruce H. Dobkin
- Understanding the mechanisms underlying recovery after stroke 7
   Gert Kwakkel, Floor E. Buma, and Michael E. Selzer
- 3. Genetics in neurorehabilitation 25 Kristin M. Pearson-Fuhrhop and Steven C. Cramer
- 4. Outcomes measurement: basic principles and applications in stroke rehabilitation 35 Carol L. Richards, Sharon Wood-Dauphinee, and Francine Malouin
- 5. Human voluntary motor control and dysfunction 51 Catherine E. Lang and Marc H. Schieber
- Assessments, interventions, and outcome measures for walking 61
   Bruce H. Dobkin
- 7. Clinical pathways 70 Thomas Platz
- 8. Electromyography in neurorehabilitation 77 Amparo Gutierrez and Austin J. Sumner
- 9. Functional neuroimaging 84 Nick S. Ward and Richard S. J. Frackowiak

#### Section 2 – Therapeutic technology

- Evolving insights into motor learning and their implications for neurorehabilitation 95 Peter J. Beek and Melvyn Roerdink
- Balance training 105 Margaret Mak and Fay B. Horak

- Functional electrical stimulation in neurorehabilitation 120 Peter H. Gorman and P. Hunter Peckham
- 13. **Peripheral nerve stimulation** 135 Leonardo G. Cohen and Adriana B. Conforto
- 14. Brain stimulation 141 Friedhelm C. Hummel and Pablo Celnik
- 15. Assistive devices 150 William C. Mann and Glenn S. Le Prell
- 16. Wheelchair design and seating technology 161
  Rory A. Cooper, Rosemarie Cooper, Michael L.
  Boninger, Tasia Bobish, Laura McClure,
  Annmarie Kelleher, and Tamara L. Pelleshi
- 17. Rehabilitation robotics, orthotics, and prosthetics for the upper extremity 177
  Hermano I. Krebs, Glauco A. P. Caurin, and Linamara Battistella
- 18. Rehabilitation robotics, orthotics, and prosthetics: lower limb 190Jan Mehrholz and Marcus Pohl
- 19. Virtual reality applications in neurorehabilitation 198
  Patrice L. (Tamar) Weiss, Rachel Kizony, Uri Feintuch, Debbie Rand, and Noomi Katz
- 20. **Communication devices** 219 Sheela Stuart and Beth Mineo
- 21. **Requirements for valid clinical trials** 231 John D. Steeves
- 22. Spinal cord injury: mechanisms, cellular and molecular therapies, and human translation 242 Erna A. van Niekerk and Mark H. Tuszynski
- 23. Motor neuroprosthetics 253 Dejan B. Popović and Thomas Sinkjær

## Section 3 – Organization of rehabilitation services

- 24. Neurorehabilitative interventions in the acute stage of diseases 261 Heinrich Binder
- 25. The rehabilitation team and the economics of neurological rehabilitation 278 Richard D. Zorowitz and Anthony B. Ward

### Section 4 – Symptom-specific neurorehabilitation: sensory and motor dysfunctions

- 26. **Chronic pain** 289 Herta Flor and Frank Andrasik
- 27. Loss of somatic sensation 298 Leeanne M. Carey
- 28. Management of deforming spastic paresis 312 Nicolas Bayle and Jean-Michel Gracies
- 29. Contemporary concepts in upper extremity rehabilitation 330 Aimee Reiss, Sarah Blanton, and Steven L. Wolf
- 30. Gait disorders and rehabilitation 343 Volker Dietz
- 31. Balance function and dysfunction and the vestibular system 355C.D. Hall and Susan J. Herdman
- 32. Deconditioning and energy expenditure 367 Marilyn MacKay-Lyons

### Section 5 – Vegetative and autonomic dysfunctions

- 33. Acute neurorehabilitation for disorders of consciousness 385Theresa Pape
- 34. Plasticity in the neural pathways for swallowing: role in rehabilitation of dysphagia 405John C. Rosenbek
- 35. Autonomic dysfunction 415 Christopher J. Mathias and David A. Low

#### Section 6 – Cognitive rehabilitation

36. Rehabilitation for aphasia 437Stefano F. Cappa, Ana Inés Ansaldo, and Edith Durand

- 37. **Apraxia** 447 Thomas Platz
- 38. Unilateral neglect and anosognosia 463 Stephanie Clarke and Claire Bindschaedler
- 39. **Memory dysfunction** 478 Jonathan J. Evans
- 40. Neurorehabilitation of executive functions 489 Gary R. Turner and Mark D'Esposito
- 41. **Rehabilitation of visual field impairment** 500 Arash Sahraie and Ceri T. Trevethan

## Section 7 – Disease-specific neurorehabilitation systems

- 42. **Rehabilitation of dementia** 509 Mijail D. Serruya, Catherine Verrier Piersol, Tracey Vause Earland, and Keith M. Robinson
- 43. **Traumatic brain injury** 535 Maulik Purohit, Seth Herman, and Ross D. Zafonte
- 44. **Neurorehabilitation in epilepsy** 550 Andres M. Kanner
- 45. Parkinson's disease and other movement disorders 567 Michael Jöbges, Georg Ebersbach, and Jörg Wissel
- 46. **Predicting activities after stroke** 585 Gert Kwakkel, Boudewijn J. Kollen, and John W. Krakauer
- 47. Evidence-based benefit of rehabilitation after stroke 601
   Robert W. Teasell and Ricardo Viana
- 48. **Rehabilitation in spinal cord injury** 615 Diana D. Cardenas and Armin Curt
- 49. Multiple sclerosis 637 Serafin Beer, Fary Khan, and Jürg Kesselring
- Neuromuscular rehabilitation: diseases of the motor neuron, peripheral nerve, neuromuscular junction, and the muscle 655 Helmar C. Lehmann, Hubertus Köller, and Hans-Peter Hartung

Index 674

See color plate section in between pages 360 and 361.