## The Physics of SPORTS

Michael Lisa The Ohio State University



## CONTENTS ------

| McC   | Braw-l   | Hill Smartbook                                                                            | 1 |
|-------|----------|-------------------------------------------------------------------------------------------|---|
| Prefa | ace to   | the Student                                                                               | i |
| Prefa | ace to   | the Instructor xvii                                                                       | i |
| Ackı  | nowle    | dgments                                                                                   | i |
| Par   | tl       | Primary Chapters 1                                                                        | ] |
|       |          |                                                                                           |   |
| 1     | Wai      | rm-Up: Basic Concepts 2                                                                   | 2 |
|       | 1.1      | Quantifying the World of Sports         Units, conversions, scientific notation         2 | 3 |
|       |          | 1.1.1 Scientific Notation 3                                                               | , |
|       |          | 1.1.2 Units and Conversions 3                                                             |   |
|       | 1.2      | When We Don't Have Exact Numbers                                                          |   |
|       |          |                                                                                           | 5 |
|       |          | 1.2.1 Estimation with Photos and Videos 6                                                 |   |
|       |          | 1.2.2 Typical Scales 7                                                                    |   |
|       | 1.3      | The Center of Mass                                                                        |   |
|       |          |                                                                                           | 8 |
|       |          | 1.3.1 Some Facts 9                                                                        | _ |
|       | Pro      | blems 11                                                                                  | I |
| 2     |          | cing, Mathematically                                                                      | 4 |
|       |          |                                                                                           | + |
|       | 2.1      | Phelps in Beijing           Speed, velocity, position, and graphs         15              | 5 |
|       |          | 2.1.1 Speed 15                                                                            |   |
|       |          | 2.1.2 Position and Graphs 15                                                              |   |
|       |          | 2.1.3 Displacement and Average Velocity 16                                                |   |
|       |          | 2.1.4 Vectors and Scalars 17                                                              |   |
|       |          | 2.1.5 Instantaneous Velocity 18                                                           |   |
|       | 2.2      | Bolt in Berlin                                                                            |   |
|       |          | Acceleration, constant-acceleration kinematics                                            | 0 |
|       |          | 2.2.1 Exploding Off the Block 20                                                          |   |
|       |          | 2.2.2 Constant Acceleration Kinematics 23                                                 |   |
|       |          | 2.2.3 The Signs $a$ and $v$ 24                                                            |   |
|       | 2.3      | Rope-Climbing and Diving                                                                  | - |
|       |          | Vertical motion and gravity                                                               | / |
|       |          | 2.3.1 The 800-lb Gorilla: Gravity 28                                                      |   |
|       |          | <ul><li>2.3.2 Freefall Time 29</li><li>2.3.3 Landing Velocity 31</li></ul>                |   |
|       |          |                                                                                           |   |
|       | <u> </u> | , , , , , , , , , , , , , , , , , , ,                                                     | • |
|       |          |                                                                                           | 3 |
|       | Pro      | blems                                                                                     | 4 |

| 3 | Net Force: Dwight Howard Illustrates         Forces, dynamics       39 |                                 |                                                                                                                                    |    |  |
|---|------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----|--|
|   | 3.1                                                                    | •                               |                                                                                                                                    | 40 |  |
|   |                                                                        |                                 | sysics of a Dwight Howard Dunk                                                                                                     | 40 |  |
|   | 3.2                                                                    | 3.2.1                           | Waiting for the Pass<br>Weight, ground reaction force, equilibrium, free-body<br>diagrams, Newton's first law 40                   |    |  |
|   |                                                                        | 3.2.2                           | Spec Sheet<br>Weight and mass 42                                                                                                   |    |  |
|   |                                                                        | 3.2.3                           | The Launch<br>Newton's second and third laws; dynamics of a jump;<br>dynamics with nonconstant forces; ground reaction<br>force 45 |    |  |
|   |                                                                        | 3.2.4                           | The FlightFree-fall dynamics, revisited52                                                                                          |    |  |
|   |                                                                        | 3.2.5                           | The LandingCushioning limitations, GRF revisited53                                                                                 |    |  |
|   | 3.3                                                                    |                                 | ays Traction                                                                                                                       |    |  |
|   |                                                                        | Frictio                         | <i>R</i>                                                                                                                           | 55 |  |
|   |                                                                        | 3.3.1                           | Static and Kinetic Friction 56                                                                                                     |    |  |
|   |                                                                        | 3.3.2                           | Anti-Lock Brakes and Traction Control 57                                                                                           |    |  |
|   | 3.4                                                                    |                                 | More-Complex Situations         2D dynamics and applications         59                                                            |    |  |
|   |                                                                        | 3.4.1                           | Dwight Howard Takes a Quick Step<br>Vectors 59                                                                                     |    |  |
|   |                                                                        | 3.4.2                           | Football Tryouts Two moving bodies; how to increase friction 62                                                                    |    |  |
|   |                                                                        | 3.4.3                           | Increasing Friction in Race Cars 64                                                                                                |    |  |
|   |                                                                        | 3.4.4                           | Ball Throw Speed<br>Important application 65                                                                                       |    |  |
|   | 3.5                                                                    | "Imas                           | ginary Forces" in Sports                                                                                                           | 67 |  |
|   | • • •                                                                  | 3.5.1                           | Imaginary Pushes on Dale Earnhardt Jr.<br>Sensation of force in a noninertial frame 67                                             |    |  |
|   |                                                                        | 3.5.2                           | Two Nontraditional Olympic EventsPotential to mistakenly interpret a reaction force68                                              |    |  |
|   |                                                                        | 3.5.3                           | Discus Throw<br>Centripetal and "centrifugal" forces 69                                                                            |    |  |
|   | Со                                                                     | llected E                       | Equations                                                                                                                          | 75 |  |
|   | Pro                                                                    | oblems.                         |                                                                                                                                    | 76 |  |
| 4 | Pu<br>Pro                                                              | i <b>nts, the</b><br>pjectile m | Prosbury Flop, and Other Projectile Motions                                                                                        | 80 |  |
|   | 4.1                                                                    | The l                           | Math: Simpler Than You Think                                                                                                       | 81 |  |

| 4.2  |         | all Punt: Range, Hang Time, and Compromise                                                     |          |
|------|---------|------------------------------------------------------------------------------------------------|----------|
|      |         | p, hang time                                                                                   | 83       |
|      | 4.2.1   |                                                                                                |          |
|      | 4.2.2   |                                                                                                |          |
|      | 4.2.3   | Punting Strategy and Compromises 86                                                            |          |
| 4.3  | Shot-l  |                                                                                                |          |
|      | 4.3.1   | inge when the starting and ending heights are not the same<br>Optimum Shot-put Launch Angle 89 | 88       |
| 4.4  |         | in Projectiles                                                                                 |          |
|      |         | olic motion of center of mass with changing                                                    | 01       |
|      | 4.4.1   | The Blake Griffin Ballet 91                                                                    | 91       |
|      | 4.4.2   | Dick Fosbury's Flop 92                                                                         |          |
|      | 4.4.3   |                                                                                                |          |
| Coll | octod F | quations                                                                                       | 00       |
|      |         | -                                                                                              | 99<br>00 |
| Prot | biems   | • • • • • • • • • • • • • • • • • • • •                                                        | 99       |
| Cur  | veballs | , Foul Shots, and Bent Kicks                                                                   |          |
|      |         |                                                                                                | 105      |
| 5.1  | Overv   | iew                                                                                            |          |
|      | Four fo | orces; use of approximations                                                                   | 106      |
|      | 5.1.1   | Approximations 106                                                                             |          |
| 5.2  |         | rsion in Fluid: Buoyancy                                                                       |          |
|      |         | nt force                                                                                       | 107      |
|      | 5.2.1   | Buoyancy in Air 109                                                                            |          |
| 5.3  |         | ng Through Fluid Drag                                                                          |          |
|      |         | force, drag coefficient, terminal velocity                                                     | 110      |
|      | 5.3.1   | 8                                                                                              |          |
|      |         | Important Complication 1: Speed Dependence of $C_D$ 111                                        |          |
|      | 5.3.3   | Important Complication 2: $C_D$ and<br>Surface Roughness 112                                   |          |
|      | 5.3.4   | And More Complications 113                                                                     |          |
|      | 5.3.5   | Terminal Velocity 114                                                                          |          |
| 5.4  | Sidewa  | ard Forces from Asymmetries                                                                    | 115      |
|      | 5.4.1   | The Swing of a Cricket BallSideward force from asymmetric surface roughness116                 |          |
|      | 5.4.2   | Bending a Ball's Flight<br>Magnus force 117                                                    |          |
| 5.5  | Aerod   | ynamic Forces, One at a Time                                                                   |          |
|      | Examp   | ples                                                                                           | 119      |
|      | 5.5.1   | Curveballs and Subatomic Physics<br>Magnus as a centripetal force; unexpected analogy 120      |          |
|      | 5.5.2   |                                                                                                |          |

5

|   |      | 5.5.3    | A Simple Formula for a Curveball<br>Sideward deflection over a short part of the spiral 123                                            |
|---|------|----------|----------------------------------------------------------------------------------------------------------------------------------------|
|   |      | 5.5.4    | Roberto Carlos's "Impossible" Free Kick<br>Real-life spiral example; aerodynamic-dominated versus<br>gravity-dominated ball sports 124 |
|   |      | 5.5.5    | John Paxson, Master of Forces<br>Systematic breakdown of a basketball shot 126                                                         |
|   | 5.6  |          | <b>Complicated Aerodynamics in Sports</b><br><i>quantitative analysis of more complex situations</i> 129                               |
|   |      | 5.6.1    | Knuckling<br>Effects of fluctuating orientation and drag 129                                                                           |
|   |      | 5.6.2    | Tilting into the Wind: Discus<br>Non-Magnus lift 130                                                                                   |
|   |      | 5.6.3    | Human Wings: Ski Jumps<br>Lift with adjustable tilt 133                                                                                |
|   |      | 5.6.4    | Making the World Safer for Javelin Spectators<br>Changes in javelin design and rules 133                                               |
|   |      | 5.6.5    | Not So Fast! Polyurethane Swimsuits<br>Drag effects in water and rule changes 134                                                      |
|   | 5.7  | Not Al   | ll Air Is Created Equal                                                                                                                |
|   |      | Variati  | ons in air density and the effect on sports                                                                                            |
|   |      | 5.7.1    | Rocky Mountain (Natural) High<br>Altitude and air density 135                                                                          |
|   |      | 5.7.2    | Hot Days are (not) a Drag<br>Temperature and air density 138                                                                           |
|   |      | 5.7.3    | It's Not Just the Heat—It's the Humidity<br>Humidity and air density effects 139                                                       |
|   |      | 5.7.4    | Storm Fronts 139                                                                                                                       |
|   | Coll | ected Eq | uations                                                                                                                                |
|   | Prot | olems    |                                                                                                                                        |
| 6 |      |          | ngers: Collisions in Sports d momentum                                                                                                 |
|   | 6.1  |          | a Collision Is and How to Think About It<br>ntum, impulse                                                                              |
|   | 6.2  |          | nysics of a Football Tackle<br>etely inelastic collisions, conservation of momentum 147                                                |
|   |      | 6.2.1    | The Energy of a Crunch<br>Kinetic energy, energy lost 149                                                                              |
|   |      | 6.2.2    | Helmet Design<br>Impulse, relation to force 151                                                                                        |
|   |      | 6.2.3    | Forcing a Runner out of Bounds<br>2D inelastic collisions 154                                                                          |
|   | 6.3  |          | r Pursuits: Bowling collisions; also isolated and nonisolated systems 156                                                              |

| ٠ |   |
|---|---|
| İ | ¥ |

|   |       | 6.3.1    | Beginner's First Roll: Head-on Collision <i>1D elastic collisions</i> 156                                                       |
|---|-------|----------|---------------------------------------------------------------------------------------------------------------------------------|
|   |       | 6.3.2    | Birthday Party Bowling<br>Importance of an isolated system when using momentum<br>conservation 161                              |
|   |       | 6.3.3    | Off-Center Hits: Converting a Lily<br>2D elastic collision 162                                                                  |
|   |       | 6.3.4    | Off-Center Billiards Shots<br>Special case: 2D elastic collisions for $m_1 = m_2$ 165                                           |
|   |       | 6.3.5    | Beyond Two Dimensions: The Upward Hop of the Pin<br>Impulse and again an isolated system 165                                    |
|   | 6.4   | A Hap    | py Medium: Dribbling and Driving                                                                                                |
|   |       | =        | ly inelastic collisions                                                                                                         |
|   |       | 6.4.1    | The Sad, Short Life of the NBA's Synthetic Ball<br>Coefficient of restitution 169                                               |
|   |       | 6.4.2    | Pádraig Harrington's Drive and Swinging Harder<br>Inelastic collision with finite-mass objects; COR variation with<br>speed 172 |
|   | 6.5   | Off-Ce   | enter Hits: Spinning the Ball                                                                                                   |
|   |       | Qualite  | ative introduction to torque and spin                                                                                           |
|   |       | 6.5.1    | Bounce Pass<br>Torque from friction; translation and rotation motion 178                                                        |
|   |       | 6.5.2    | Diving Shot<br>Aerodynamic and collisional aspects of topspin 179                                                               |
|   |       | 6.5.3    | Backspin on a Golf Shot<br>Aerodynamic and collisional aspects of backspin 179                                                  |
|   | Colle | ected Eq | uations                                                                                                                         |
|   |       |          |                                                                                                                                 |
| 7 |       |          | ports: Bursts of Power                                                                                                          |
|   | Ener  | gy, powe | r, work, efficiency, elasticity 186                                                                                             |
|   | 7.1   |          | ing Basketball: The Whole Process                                                                                               |
|   |       |          | rsion of energy; elastic and gravitational energy 186                                                                           |
|   |       | 7.1.1    | Heat in Basketball: Not Just for Miami<br>Kinetic to thermal energy 186                                                         |
|   |       | 7.1.2    | Energy During the Bounce<br>Elastic potential energy 187                                                                        |
|   |       | 7.1.3    | Details of Energy During the Rise<br>Gravitational potential energy 188                                                         |
|   | 7.2   | Efficie  | ncy                                                                                                                             |
|   |       |          | s definitions 191                                                                                                               |
|   |       | 7.2.1    | The Efficiency of a Basketball Bounce 191                                                                                       |
|   |       | 7.2.2    | The Efficiency of a Golf Drive 192                                                                                              |
|   |       | 7.2.3    | Heat Death 193                                                                                                                  |
|   | 7.3   | The At   | thlete: The Energetic Starting Point                                                                                            |
|   |       | Chemic   | cal energy and its conversion                                                                                                   |

|        | 7.3.1           | The Source of Energy and Its Flow<br>Food energy, Calories 194                                                    |
|--------|-----------------|-------------------------------------------------------------------------------------------------------------------|
|        | 7.3.2           | The Human Engine I: Energy Conversion<br>Biochemistry of food processing; energy storage 196                      |
| 7.4    | -               | ng Score: Energy Accounting in Sports                                                                             |
|        |                 | ergy conservation concept and its application etes                                                                |
|        | 7.4.1           | The Water Analogy 200                                                                                             |
|        | 7.4.2           | How Useful is the Energy Conservation Concept Really?<br>In-principle versus practical utility of the concept 201 |
| 7.5    |                 | Rico's Hopes Dashed power, and the human engine                                                                   |
|        | 7.5.1           | Work<br>Work–energy theorem; connection to forces 203                                                             |
|        | 7.5.2           | Power 205                                                                                                         |
|        | 7.5.3           | The Human Engine II: Power<br>Caloric conversion rates 206                                                        |
| 7.6    |                 | d Salimikordsiabi's Clean and Jerk                                                                                |
|        | Quanti<br>7.6.1 | tative analysis of power lift; details of motion 211<br>Work During a Lift 211                                    |
|        | 7.6.2           | The Snatch and Clean and Jerk Techniques<br>Details of a complicated set of moves 213                             |
| Coll   | ected Ec        | uations                                                                                                           |
| Prot   | olems           |                                                                                                                   |
|        |                 |                                                                                                                   |
|        |                 | Timing in Elastic Equipment                                                                                       |
| Stiffr | iess, tim       | ing, elastic energy storage 224                                                                                   |
| 8.1    |                 | nysics of Archery I: Energy Storage and Transfer                                                                  |
|        |                 | 's law, efficiency of energy transfer                                                                             |
|        | 8.1.1           | The Arrow's Energy 225                                                                                            |
|        | 8.1.2           | The Bow's Energy<br>Hooke's law 225                                                                               |
|        | 8.1.3           | Bow and Arrow Efficiency<br>Energy "loss" depends on system details 226                                           |
| 8.2    |                 | nysics of Archery II: Fire Power<br>ntion frequency and period                                                    |
| 8.3    |                 | nysics of Archery III: Archer's Paradox<br>as of extended rod, timing details                                     |
|        | 8.3.1           | -                                                                                                                 |
|        | 8.3.2           | How the Archer's Paradox Works<br>Buckling, matching timing, details 231                                          |
| 8.4    |                 | Chára's Slap Shot: Fast Storage, Faster Release<br>storage and collisions                                         |
|        | Lnervy          |                                                                                                                   |
| 8.5    |                 | e-Jumping Brides and Quadratic Equations                                                                          |

8

|      | 8.5.1     | Dangling Above the Water<br>Tension as an equilibrating force 237                              |
|------|-----------|------------------------------------------------------------------------------------------------|
|      | 8.5.2     | How Low Will He Bounce?                                                                        |
|      |           | Nontrivial energy example and the quadratic equation 238                                       |
| Coll | ected E   | quations                                                                                       |
| Pro  | blems     |                                                                                                |
| The  | Physic    | es of Cycling                                                                                  |
|      | -         | wer generation, rolling friction, more aerodynamics, power                                     |
| bala | nce, rota | ational dynamics, torque 244                                                                   |
| 9.1  | Input     | to the Bike: Sustained Human Power 246                                                         |
|      | 9.1.1     | Caloric Power Requirements for Long-Term Effort<br>Metabolic equivalent task (MET) ratings 246 |
|      | 9.1.2     | Oxygen Uptake, $VO_2$ max, and Power<br>Definition of $VO_2$ max; rider efficiency 248         |
|      | 9.1.3     | Power-to-Weight Ratio <i>PWR</i> 252                                                           |
| 9.2  | Power     | Output                                                                                         |
|      | Power,    | force, and velocity                                                                            |
|      | 9.2.1     | Hills                                                                                          |
|      |           | Gravitational force along a slope 253                                                          |
|      | 9.2.2     | Rolling Resistance<br>Dissipation during rolling 255                                           |
|      | 9.2.3     | Wind Drag<br>Drag in still and moving air 256                                                  |
|      | 9.2.4     | The Bicycle Power EquationIterative solution to complicated equations260                       |
|      | 9.2.5     | Cycling Versus Other Modes of Transport<br>Comparison of power requirements 263                |
|      | 9.2.6     | Drafting                                                                                       |
|      |           | Aerodynamics of more than one object 265                                                       |
| 9.3  | Talans    | ky Drives the Bike                                                                             |
|      | Torque    | and rotational motion                                                                          |
|      | 9.3.1     | Rolling                                                                                        |
|      |           | Connection between linear and rotational motion 272                                            |
|      | 9.3.2     | Drivetrain I: Gears                                                                            |
|      | 9.3.3     | Geometry of chain rings, importance of cadence 274                                             |
|      |           | That Annoying $2\pi$ : Angular Velocity<br>Angular velocity, the radian 279                    |
|      | 9.3.4     | Drivetrain II: Chain Action<br>Torque with fixed right-angle lever arm 280                     |
|      | 9.3.5     | Drivetrain III: Chain Reaction<br>Clarifying Newton's third law 283                            |
|      | 9.3.6     | Drivetrain IV: Pushing the Pedals<br>Line of action; torque for forces at an angle 284         |

9

|    |       | 9.3.7    | Rolling Friction, Revisited<br>Torque nature of "rolling friction," lever arm when line of<br>action is not tangent to edge 287 |
|----|-------|----------|---------------------------------------------------------------------------------------------------------------------------------|
|    |       | 9.3.8    | Back to Basics: The Wheel Again<br>Moment of inertia, angular acceleration, rotational kinetic                                  |
|    | ~     |          | energy 290                                                                                                                      |
|    |       | -        | juations         293                                                                                                            |
|    | Prod  | lems     |                                                                                                                                 |
| 10 | Angu  | lar moti | chletes in Flight<br>fon with changing moment of inertia, rotation about fixed axes<br>pace, conservation of angular momentum   |
|    | 10.1  |          | n Rotation nical axes and moments of inertia                                                                                    |
|    | 10.2  |          | vard Giant Circle                                                                                                               |
|    | 10.4  |          | e, energy, rotation around fixed axis                                                                                           |
|    |       |          | Torques and Spin RateTorque changes with lever arm305                                                                           |
|    |       | 10.2.2   | Maximal Force at the Bottom of the Swing<br>Conservation of energy with rotational motion; centripetal<br>force 306             |
|    |       | 10.2.3   | Swinging to Speed Up 309                                                                                                        |
|    |       | 10.2.4   | Dismount Angular momentum and conservation 309                                                                                  |
|    | 10.3  | ÷        | e Skating: Spinning on Ice<br>ar momentum and work done by "internal" force 312                                                 |
|    | 10.4  |          | onal Action and Reaction<br>ar momentum of different body parts                                                                 |
|    |       |          | Acrobatics of a Long-Jumper, Revisited<br>Rotational action/reaction about the transverse axis 315                              |
|    |       | 10.4.2   | Throwing, Kicking, Twisting<br>Rotation and counterrotation along the longitudinal<br>axis 316                                  |
|    |       | 10.4.3   | Balance Beam<br>Rotation and counterrotation about the anteroposterior<br>axis 317                                              |
|    | Colle | ected Eq | quations                                                                                                                        |
|    | Prob  | lems     | 319                                                                                                                             |
| Pa | rt II | Supp     | lementary Chapters                                                                                                              |
| 11 | Line  | s of An  | tion on the Line of Scrimmage: The Torque Wars 322                                                                              |
| 12 |       |          | nds Home Run                                                                                                                    |
|    |       |          | isions                                                                                                                          |
|    |       |          | Bat Collision: Speeds, Impulse, Force       326         Collision: Speeds, Impulse, Force       320                             |
|    | 12.2  | Batted   | 1 Ball Speed (BBS)                                                                                                              |

-

|      | 12.3    | Yocus on the Bat         Collision with an extended object         2.3.1         Bonds's Swing         330 |
|------|---------|------------------------------------------------------------------------------------------------------------|
|      |         | 2.3.2 The Bat as an Extended Object<br>Sweet spot, vibrations, effective mass 331                          |
|      | Colle   | ed Equations                                                                                               |
| 13   | The l   | ole Vault                                                                                                  |
|      |         | Drigins                                                                                                    |
|      | 13.2    | The Modern Event         335                                                                               |
|      |         | 3.2.1 Performance Progression 335                                                                          |
|      |         | 3.2.2 Contributions to Height 337                                                                          |
|      | 13.3    | ole Vault 101: Energy Flow 338                                                                             |
|      |         | 3.3.1 Energy-Based Estimate of Vaulting Height 338                                                         |
|      |         | 3.3.2 What Matters in the Simple Calculation 340                                                           |
|      | 13.4    | ole Vault 102: Beyond Energy Flow                                                                          |
|      |         | 3.4.1 Maximizing Initial Energy: Carry Weight 342                                                          |
|      |         | 3.4.2 Minimizing Inelastic Energy "Loss" 344                                                               |
|      |         | 3.4.3 Fully Exploiting the Energy: Flexibility and Timing 347                                              |
|      |         | 3.4.4 Work Done by the Athlete 349                                                                         |
| 14   | ls It I | etter to Run through First Base or to Dive? 351                                                            |
|      | 14.1    | The Story according to Sport Science                                                                       |
|      | 14.2    | Too Close to Call                                                                                          |
|      | 14.3    | Diving Speed                                                                                               |
|      |         | 4.3.1 "50% Deceleration" 355                                                                               |
|      |         | 4.3.2 Newton's First Law and Air Drag 355                                                                  |
|      | 14.4    | What's Really Happening: Torque and Impulse         356                                                    |
|      |         | Other Issues                                                                                               |
|      | 14.6    | Concluding Remarks                                                                                         |
| Α    | Unit    | onversions                                                                                                 |
| В    | Tabl    | of Relevant Physical Properties                                                                            |
| Furt | her R   | ading                                                                                                      |
| Ans  | wers    | Odd-Numbered Problems 372                                                                                  |
| Inde | x       |                                                                                                            |