Molecular Networks as Sensors and Drivers of Uterine Receptivity in Livestock

Habilitation thesis for the attainment of the *venia legendi*Genetics and Functional Genome Analysis

Faculty of Veterinary Medicine, LMU Munich

Dr. rer. nat. Stefan M. Bauersachs

Chair for Molecular Animal Breeding and Biotechnology (Univ.-Prof. Dr. Eckhard Wolf) Department of Veterinary Sciences, Faculty of Veterinary Medicine

and

Laboratory for Functional Genome Analysis (LAFUGA)
Gene Center

Ludwig-Maximilians-Universität München

2011

Umhabilitierung an der Universität Zürich
Erteilung der VENIA LEGENDI für das Gebiet Genetik und funktionelle Genomanalyse
am 24. August 2018

Contents

Summary	1
Zusammenfassung	3
Introduction	6
Transcriptome analysis as a holistic tool for the study of cellular changes at the molecular level	8
Resources for functional gene annotation and gene/protein interactions and corresponding analysis tools	9
Identification of biological themes related to endometrial remodeling and receptivity in studies of bovine endometrium during the estrous cycle	12
Comparison of endometrial tissue samples collected at estrus and diestrus and dynamic analysis of transcriptome profiles during the estrous cycle	12
Analysis of the serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 14 (SERPINA14, alias uterine milk protein) gene and protein expression	14
Studies of bovine endometrium during the pre-implantation phase	15
Identification of genes involved in preparation of the bovine endometrium for embryo implantation	15
Identification of fertility-related genes by the analysis of pathological conditions – analysis of endometrial responses to clone pregnancies in comparison to IVF pregnancies in cattle	18
Comparison of effects of human interferon alpha (IFNA) and days 15 and 18 of pregnancy on gene expression in the bovine endometrium	20
Analysis of gene expression in endometrium during the pre-implantation phase in porcine endometrium	46
Analysis of gene expression in endometrium during the pre-implantation phase in equine endometrium	48
Comparison of gene expression data sets from different mammalian species	50
Correlation of gene expression data and data from genome-wide association studies (GWAS) links differential gene expression with phenotypes related to fertility	52
Further strategies and approaches to obtain better understanding of processes related to establishment and maintenance of pregnancy in mammals	54
References	55
Acknowledgements	61