Novel Aromatics with Corannulene as a Triad Building Block, Starburst Core or Polymer End-Capping Unit: Synthesis and Properties

Dissertation

zur

Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.)

vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der

Universität Zürich

von

Daphne Diemer aus

Deutschland

Promotionskomitee:

Prof. Dr. Jay S. Siegel (Vorsitz) Prof. Dr. Kim Baldridge Prof. Dr. Karl-Heinz Ernst Prof. Dr. Roland K.O. Sigel

Zürich, 2015

Table of Contents

TABLE OF CONTENTS	XXIV
I INTRODUCTION	
I.1 CORANNULENE – AN INTRODUCTION	
I.1.2 Synthesis and functionalization possiblities	20
1.2 A COMPARISON WITH ANALOGUES	27
I.3 PROSPECTIVE PROPERTIES AND APPLICATIONS AS MATERIAL	
II OBJECTIVES AND MOTIVATION	
HI 1 CODANNUU ENE AS A TDIAD DUU DINC DI OCK	25
III.1 CORANNOLENE AS A TRIAD BUILDING BLUCK	
III.1.2 SYNTHESIS OF DI-SUBSTITUTED CORANNULENYL-TRIAD COMPOUNDS	
III.1.3 ANALYSIS AND CHARACTERIZATION	
III.1.4 OPTICAL AND ELECTROCHEMICAL CHARACTERIZATION OF THE TRIADS	
III 2 CORANNIILENE AS A STARBURST CORE	56
III.2.1 INTRODUCTION	
III.2.2 SYNTHESIS OF PENTA-SUBSTITUTED AND MONO-SUBSTITUTED STARBURST	
STRUCTURES	
III.2.2.1 Synthetic Approach for Penta-Substituted Starbursts	
III.2.2.2 Synthesis of Penta-Substituted Corannulene Starbursts	62
III.2.2.3 SYNTHESIS OF MONO-SUBSTITUTED ANALOGUES	65
III.2.3 Analysis and Characterization	
III.2.4 OPTICAL AND ELECTROCHEMICAL CHARACTERIZATION OF PENTA-SUBSTITU	JTED
AND MONO-SUBSTITUTED STARBURST STRUCTURES	
III.3 CORANNULENE AS A POLYMER END-CAPPING UNIT	81
III.3.1 INTRODUCTION	
111.3.2 SYNTHESIS OF POLYMERIC CORANNULENE	
III.3.3 ANALYSIS AND CHARACTERIZATION	
UNIT CORANNULENE	APPING
IV SUMMARY OF THE PROJECTS	100
V OUTLOOK	102
	105
VI LAF ERIMENTAL FART	105
VI.1.1 Chemicals:	105
VI.1.2 Column Chromatography:	105
VI.1.3 Inert atmosphere	105
	106
VI.2 ANALYTICA TECHNIQUES	106
V1.2.2 UVVis-Spectrometry:	106
VI.2.3 Flurimeter Measurements:	106
VI.2.4 NMR Instruments:	107

VI.2.5 1	Mass Spectrometry:
VI.3 Synti	HETIC PROCEDURES:
VI.3.1 (General Procedure for Boronic Ester of 75-79:108
VI.3.2 (General Procedure for Corannulene as a Triad Building Block (48, 51-54)
•••••	
VI.3.3	1.6-Dimethyl-7,10-diethylfluaoranthene (58)115
VI.3.4	1,6-bis(dibromomethyl)-7,10-bis(1-bromoethyl)-fluoranthene (Mix of
diaster	eomers) (59)
VI.3.5	Synthesis of 1,6-dibromo-2,5-dimethylcorannulene (60)117
VI.3.6	Synthesis of 1,6-di-(bispinacolatoborato)-2,5-dimethylcorannulene (72) 118
VI.3.7	Synthesis of 3-Decylthiophene (90)119
VI.3.8	Synthesis of 2-Bromo-3-decylthiophene (91)
VI.3.9	Synthesis of 2-stannyl-3-decylthiophene (92)
VI.3.10	Synthesis of bis-3-decylthiophene-(2,2 ⁻ -bithiophene) (94)122
V.3.11	Synthesis of 5-trimethylsilyl-[bis-3-decylthiophene-(2,2`-bithio-phene)]
(101)	
VI.3.12	Synthesis of 5-corannenyl-[bis-3-decylthiophene-2,2`-bithiophene)] (104)
VI.3.13	Synthesis of 2-stannyl-3-hexylthiophene (99)
VI.3.14	Synthesis of 2-corannenyl-3-hexylthiophene (103)
VI.3.15	Synthesis of 2-stannyl-3-hexyl-5-phenyl-thiophene (100)
VI.3.16	Synthesis of 2-corannulyl-3-hexyl-5-phenyl-thiophene (102)128
VI.3.17	Synthesis of 2-Phenyl-3-hexyl-thiophene (88)
VI.3.18	Synthesis of 2-Bromo-4-hexyl-5-phenylthiophene (83)
VI.3.19	Synthesis of 2-corannylene-3-hexyl-thiophene (89)
VI.3.20	Synthesis of 2-bromo-/4-hexyl-5- corannylene –thiophene) (85)
VI.3.21	Synthesis of 5-monobromo-[bis-3-decylthiophene-(2,2`-bithio-phene)]
(84)	
VI.3.22	Synthesis of 5,5 '-dibromo-[bis-3-decylthiophene-(2,2 '-bithio-phene)]
(94)	
VI.3.23	Synthesis of sym-pentakis(Bpin)corannulene (33)
VI.3.24	Synthesis of sym-penta-2-(3-hexyl-thiophene)-corannulene (95)
VI.3.25	Synthesis of sym-penta-2-(3-hexyl-5-phenylthiophene)-corannulene (96)
VI.3.26	Synthesis of sym-penta-2-(3-hexyl-5-corannenyl-thiophene)-corannulene
(98)	

VI.3.27 Synthesis of Penta-sym-[bis-3-decylthiophene-(2,2`-bithiophene)]-
corannulene (97)	140
VI.3.28 Synthesis of Monohalo-corannulene (57, 115)	141
VI.3.29 Synthesis of Mono-methyl-corannulene (116)	143
VI.3.30 Synthesis of Monobromomethylene-corannulene (117)	144
VI.3.31 Synthesis of Pentakis-(trimethylsilylacetylene)-corannulene	145
VI.3.32 Synthesis of Mono-ethynyl endcapped P3HT (114)	146
VI.3.33 Synthesis of Monocapped corannenyl P3HT (108)	147
VI.3.34 Synthesis of di-capped benzyl P3HT (111)	148
VI.3.35 Synthesis of Di-capped Phenyl P3HT (110)	149
VI.3.36 Synthesis of di-capped corannulene P3HT (107)	150
VI.3.37 Synthesis of P3HT (109)	151
VII REFERENCES	152
A CURRICULUM VITAE	156

List of Figures

.

I-1	Corannulene [5]-circulene (l .) and buckminsterfullerene (C_{60}) (r .)	18
I-2	Polar aromatic resonance structure of corannulene	18
I-3	Definition A) of four different binding C-C-atoms B) of bowl d corannulene	epth of 19
I-4:	First starting molecules for failed corannulene synthesis	20
1-5	Graphene sheet with emphasized patterns of fullerene, nanotube and g taken from	graphite 27
I-6	Curved polyaromatic hydrocarbons (sumanene 34, ring structure 35, ca 36 and pleidannulene 37	inastane 28
I-7	Crystal packing; A) Packing of molecules of trifluoromethylated corar B) Packing of 1,2,5,6-tetrakis(3,5-dimethylphenylethynyl-)corannule Packing of 1,3,5,7,9-pentakis(3,5-dimethylphenylethynyl-)corannule Packing of tridentate	nulene, ene; C) ne; D) 29
I-8	1,2-bis(corannulenylethynyl)benzene 38 and	1,4-b
	is(corannuleneylethynyl)benzene 39 as blue corannulene emitters	30
I-9	left: Structure of the buckycatcher 40; right: crystal complex 40 with C_{60}	o 31
I-10	Direct complexation of C_{60} and corannulene on a Cu(110) surface	31
I-11	Exapmles of corannulene acceptors	32
III-1	Examples of small molecule used as OLEDs (mCP 43, TmPyPB	44 and
	Ir(mppy)3 45	33
111-2	a) Chemical structure of 1,6-diphenylethynyl-2,5-dimethylcorannulene 2,7-diphenylethynly-fluorene 47; b) HOMOs of 46 (<i>left</i>) and 47 (<i>rig</i> target triad corannulene structure with corannulene as outer building	46 and ght), c) blocks 36
111-3	2,7-dipyrenyl-9-(2-ethylhexyl)carbzole 55 and 2,7-dipyrenyl-9,9-c fluorene 56	lihexyl- 37
II I- 4	Overview of all triad structures: 1,6-dicorannenyl-2,5-dimethylcorannu	lene 48,

2,7-dicorannenyl-9,9'-octyl-fluorene 50, 2,7-dicorannenyl-9H-hexyl-carbazole

	51, 3,7-dicorannenyl-dibenzothiophene 52, 3,7-dicorannenyl-S,S'-dic	oxide-
	dibenzothiophene 53, 3,7-dicorannenyl-dibenzofuran 54	37
111-5	Dendritic Structures in nature such as nerv cells, lungs (human lung	g) and
111-6	Dendrimer generation, comparison of divergent and convergent m (source: internet)	sethod 56
III-7:	Pentagonal starburst corannulene (sym-pentaphenyl-corannulene)	57
111-8	List of thiophene-branches (2-bromo-3-hexyl-thiophene 82, 2-bromo-3-	hexyl-
	5-phenyl-thiophene 83, 5-bromo-[bis-3-decylthiophene-/2,2`-bithiophene	e)] 84,
	2-bromo-3-hexyl-5-corannylene-thiophene 85	63
111-9	Overview of starburst corannulenes (95, 96, 97 and 98)	64
III-10	Thiophene-branches for mono-substituted corannulene	65
III-11	Molecular Structure of some first and second generation of semicond	ucting
	polymers	81
III-12	Comparison of regioirregular and regioregular polymerization of P3HT	82
III-13	Bulk heterojunction solar cell (BHJ) (left), P3HT and PCBM (p-type mat	erial a
	nd n-type material (right)	83
III-14:	All polymers (n= 14-20): corannulene di-capped P3HT 107; corann	nulene
	mono-capped P3HT via an acetylene bridge 108; plain P3HT 109; pher	nyl di-
	capped P3HT 110, benzyl di-capped P3HT 111	85
V.1	Tapping mode AFM images of the surface of films of A-B) 107 and C)	РЗНТ
	copied	102
V.2:	Fibonacci route (top) on corannulene and possible target molecules (down)
		103
V.3	Target molecules consisting of corannulene as the main builing bloc	k; the
	upper calculated molecules (blue), below respectively target structures	104

List of Tables

111-1	Photophysical data of triad structures in chloroform	49
-------	--	----

- III-2Photophysical data of triad structures in toluene49
- III-3 Correlation between phosphorescence lifetime, fluorescence lifetime and fluorescence quantum yields
 52
- III-4 Calculated first reduction potential (B97D/Def2-TZVPP $E^{\circ}=-\Delta G/nF + E_{ref}$ reduction potentials, ¹n=1, F=1 eV, ²Corrected to the Ag/AgCl electrode, -4.52) and measured first reduction potential (Ag/AgCl-electrode as reference, carbon as counter electrode and platin as working electrode, scan rate 0.1 s-1) 55
- III-5 Overview of different metal-coupling reaction trials with 32 to obtain 81; SM = starting material (32), $C_{20} = 1$, discoupled (bithiophene side-product), monosub = mono-thiophene corannulene, chloro/thio-sub. = mixture of different substitutions containing chloro- or thiophenyl- units 60

III-6 Photophysical data of starburst structures in chloroform $(10^{-5} - 10^{-7}M)$ 72

- 111-7 Photophysical data of starburst structures in toluene $(10^{-5} 10^{-7}M)$ 72
- III-8 Correlation between fluorescence lifetime and phosphorescence lifetime of starburst structures
 77
- III-9 Electrochemical study Measured first reduction potential (Ag/AgCl-electrode as reference, carbon as counter electrode and Pt as working electrode, scan rate 0.1 s-1) with reference to corannulene 1 79
- III-10 Data in chloroform for polymer recorded in concentration 10^{-5} - 10^{-7} M 92
- 111-11 Data in toluene for polymer recorded in concentration 10^{-5} - 10^{-7} M 92
- III-12 Electrochemical band-gaps for polymers measured in THF (distilled);
 Ag+/AgCl-electrode as reference, Platin-electrode as working electrode and carbon-electrode as counter-electrode, scan rate 0.4 s⁻¹