ENDOCRINE DISRUPTORS IN THE ENVIRONMENT

SUSHIL K. KHETAN

WILEY

CONTENTS

For	reword		xi		
Preface			x	viii	
Acı	ronyms				
Glo	ossary		x	xvi	
1	Enviro	nmenta	l Endocrine Disruptors	1	
	1.1	Introdu	ction, 1		
		1.1.1	The Endocrine System, 1		
		1.1.2	Endocrine Disrupting Chemicals (EDCs), 3		
		1.1.3	Sources of EDCs in the Environment, 4		
		1.1.4	Deleterious Effects of EDCs on Wildlife and on Humans,	6	
		1.1.5	Endocrine Disruption Endpoints, 6		
	1.2	Salient Aspects about Endocrine Disruption, 7			
		1.2.1	Low-Dose Effects and Nonmonotonic Dose Responses, 7		
		1.2.2	Exposures during Periods of Heightened Susceptibility		
			in Critical Life Stages, 9		
		1.2.3	Delayed Dysfunction, 11		
		1.2.4	Importance of Mixtures, 11		
		1.2.5	Transgenerational, Epigenetic Effects, 12		
	1.3	Historical Perspective of Endocrine Disruption, 12			
	1.4	Scope and Layout of this Book, 19			
	1.5	.5 Conclusion, 20			
		References, 21			

PART I MECHANISMS OF HORMONAL ACTION AND PUTATIVE ENDOCRINE DISRUPTORS

2 Mechanisms of Endocrine System Function

- 2.1 Introduction, 29
- 2.2 Hormonal Axes, 29
 - 2.2.1 Hypothalamus–Pituitary–Gonad (HPG) Axis, 31
 - 2.2.2 The Hypothalamic-Pituitary-Thyroid (HPT) Axis, 33
 - 2.2.3 The Hypothalamic-Pituitary-Adrenal (HPA) Axis, 34
- 2.3 Hormonal Cell Signaling, 35
 - 2.3.1 Receptors and Hormone Action, 35
 - 2.3.2 Genomic Signaling Pathway, 36
 - 2.3.3 Rapid-Response Pathway (Nongenomic Signaling), 38
 - 2.3.4 Receptor Agonists, Partial Agonists, and Antagonists, 40
- 2.4 Sex Steroids, 41
 - 2.4.1 Physiologic Estrogens, 41
 - 2.4.2 Androgens, 43
- 2.5 Thyroid Hormones, 45
- 2.6 Conclusions and Future Prospects, 46 References, 47

3 Environmental Chemicals Targeting Estrogen Signaling Pathways

- 3.1 Introduction, 51
 - 3.1.1 Gonadal Estrogen Function Disruptors, 52
- 3.2 Steroidal Estrogens, 54
 - 3.2.1 Physiologic Estrogens, 55
 - 3.2.2 17α-Ethinylestradiol (EE2), 55
 - 3.2.3 Phytoestrogens, 57
 - 3.2.4 Mycoestrogen Zearalenone (ZEN), 59
- 3.3 Nonsteroidal Estrogenic Chemicals, 60
 - 3.3.1 Diethylstilbestrol (DES), 60
 - 3.3.2 Organochlorine Insecticides, 62
 - 3.3.3 Polychlorinated Biphenyls (PCBs), 65
 - 3.3.4 Alkyphenols, 65
 - 3.3.5 Parabens (Hydroxy Benzoates), 73
 - 3.3.6 Sun Screens (Chemical UV Filters), 74
- 3.4 Metalloestrogens, 75
 - 3.4.1 Cadmium (Cd), 76
 - 3.4.2 Lead (Pb), 76
 - 3.4.3 Mercury (Hg), 77
 - 3.4.4 Arsenic (As), 77
- 3.5 Conclusion and Future Prospects, 78 References, 78

29

27

4 Anti-Androgenic Chemicals

- 4.1 Introduction, 91
- 4.2 Testosterone Synthesis Inhibitors, 92
 - 4.2.1 Phthalates, 92
- 4.3 Androgen Receptor (AR) Antagonists, 96
 - 4.3.1 Organochlorine (OC) Pesticides, 96
 - 4.3.2 Organophosphorus (OP) Insecticides, 98
 - 4.3.3 Bisphenol A (BPA), 99
 - 4.3.4 Polybrominated Diphenyl Ethers (PBDEs), 99
 - 4.3.5 Vinclozolin (VZ), 100
 - 4.3.6 Procymidone, 101
- 4.4 AR Antagonists and Fetal Testosterone Synthesis Inhibitors, 102
 - 4.4.1 Prochloraz, 102
 - 4.4.2 Linuron, 103
- 4.5 Comparative Anti-Androgenic Effects of Pesticides to Androgen Agonist DHT, 103
- 4.6 Conclusions and Future Prospects, 103 References, 104

5 Thyroid-Disrupting Chemicals

- 5.1 Introduction, 111
- 5.2 Thyroid Synthesis Inhibition by Interference in Iodide Uptake, 1135.2.1 Perchlorate, 113
- 5.3 TH Transport Disruptors and Estrogen Sulfotransferases Inhibitors, 114
 - 5.3.1 Polychlorinated Biphenyls (PCBs), 114
 - 5.3.2 Triclosan, 116
- 5.4 Thyroid Hormone Level Disruptors, 1175.4.1 Polybrominated Diphenyl Ethers (PBDEs), 117
- 5.5 Selective Thyroid Hormone Antagonists, 119
 - 5.5.1 Bisphenols, 119
 - 5.5.2 Perfluoroalkyl Acids (PFAAs), 120
 - 5.5.3 Phthalates, 120
- 5.6 Conclusions and Future Prospects, 121 References, 121

6 Activators of PPAR, RXR, AhR, and Steroidogenic Factor 1 126

- 6.1 Introduction, 126
- 6.2 Peroxisome Proliferator-Activated Receptor (PPAR) Agonists, 127
 6.2.1 Organotin Antifoulant Biocides, 128

91

146

166

- 6.2.2 Perfluoroalkyl Compounds (PFCs), 130
- 6.2.3 Phthalates, 132
- 6.3 Aryl Hydrocarbon Receptor (AhR) Agonists, 133
 - 6.3.1 Polychlorinated-Dibenzodioxins (PCDDs) and -Dibenzofurans (PCDFs), 133
 - 6.3.2 Coplanar Polychlorinated Biphenyls, 135
 - 6.3.3 Substituted Urea and Anilide Herbicides, 135
- 6.4 Steroidogenesis Modulator (Aromatase Expression Inducer), 1366.4.1 Atrazine, 136
- 6.5 Conclusions and Future Prospects, 138 References, 139

7 Effects of EDC Mixtures

- 7.1 Introduction, 146
- 7.2 Combined Effect of Exposure to Multiple Chemicals, 146
- 7.3 Mixture Effects of Estrogenic Chemicals, 148
- 7.4 Mixture Effects of Estrogens and Anti-Estrogens, 151
- 7.5 Mixture Effects of Anti-Androgens, 152
 - 7.5.1 Anti-Androgens with Common Mechanism of Action, 152
 - 7.5.2 Anti-Androgens with Different Modes of Action, 154
 - 7.5.3 Chronic Exposure of Low Dose Mixture of Anti-Androgens Versus Acute Exposure to High Dose Individual Compounds, 156
- 7.6 Mixture Effects of Thyroid Disrupting Chemicals, 157
- 7.7 Mixture Effects of Chemicals Acting via AhR, 158
- 7.8 Conclusions and Future Prospects, 158 References, 161

8 Environmentally Induced Epigenetic Modifications and Transgenerational Effects

- 8.1 Introduction, 166
- 8.2 Regulatory Epigenetic Modifications, 168
 - 8.2.1 Methylation of Cytosine Residues in the DNA and Impact on Gene Expression (Transcriptional Silencing), 168
 - 8.2.2 Remodeling of Chromatin Structure through Post-Translational Modifications of Histone Tails (Determinants of Accessibility), 170
 - 8.2.3 Regulation of Gene Expression by Noncoding RNAs, 173
 - 8.2.4 DNA Demethylation, 174
 - 8.2.5 Assays for Epigenetic Modification, 175
- 8.3 Epigenetic Dysregulation Effects of Endocrine Disruption, 176
 - 8.3.1 Bisphenol A (BPA): A Case Study, 177
 - 8.3.2 DEHP, 179

- 8.4 Environmental Epigenetic Effects of Heavy Metals Exposure, 179
 - 8.4.1 Cadmium, 180
 - 8.4.2 Arsenic, 180
 - 8.4.3 Nickel, 180
 - 8.4.4 Lead, 181
- 8.5 Transgenerational Inheritance of Environmentally Induced Epigenetic Alterations, 181
 - 8.5.1 DES, 182
 - 8.5.2 Vinclozolin, 183
 - 8.5.3 Methoxychlor, 185
 - 8.5.4 BPA, 185
 - 8.5.5 2,3,7,8-Tetrachlorodibenzo-*p*-dioxin (TCDD), 185
- 8.6 Transgenerational Actions of EDCs Mixture on Reproductive Disease, 186
- 8.7 Conclusions and Future Prospects, 187 References, 188

PART II REMOVAL MECHANISMS OF EDCs THROUGH BIOTIC AND ABIOTIC PROCESSES

9 Biodegradations and Biotransformations of Selected Examples of EDCs

197

- 9.1 Introduction, 197
- 9.2 Natural and Synthetic Steroidal Estrogens, 199
 - 9.2.1 17β-Estradiol and Estrone, 199
 - 9.2.2 17α-Ethynylestradiol, 202
- 9.3 Alkylphenols, 205
 - 9.3.1 4-*n*-Nonylphenol (4-NP₁), 205
 - 9.3.2 4-*tert*-Nonylphenol Isomer 4-(1-Ethyl-1,4-Eimethylpentyl) Phenol (NP₁₁₂), 208
 - 9.3.3 4-*tert*-Nonylphenol Isomer 4-[1-Ethyl-1,3-Dimethylpentyl] Phenol (4-NP₁₁₁), 210
 - 9.3.4 4-n- and 4-tert-Octylphenols, 212
 - 9.3.5 Bisphenol A, 214
- 9.4 Phthalates, 220
 - 9.4.1 Di-n-butyl Phthalate (DBP), 221
 - 9.4.2 *n*-Butyl Benzyl Phthalate (BBP), 222
 - 9.4.3 Di-(2-ethylhexyl) Phthalate (DEHP), 223
 - 9.4.4 Di-n-octyl Phthalate (DOP), 226
- 9.5 Insecticides, 226
 - 9.5.1 Methoxychlor, 226
- 9.6 Fungicides, 228 9.6.1 Vinclozolin, 228

- 9.6.2 Procymidone, 231
- 9.6.3 Prochloraz, 232
- 9.7 Herbicides, 232
 - 9.7.1 Linuron, 232
 - 9.7.2 Atrazine, 233
- 9.8 Polychlorinated Biphenyls (PCBs), 236
- 9.9 Polybrominated Diphenyl Ethers (PBDEs), 238
 - 9.9.1 2,2',4,4'-Tetrabromodiphenyl Ether (BDE-47), 238
 - 9.9.2 2,2',4,4',5-Penta-bromodiphenyl Ether (BDE-99), 243
 - 9.9.3 3,3',4,4',5,5',6,6'-Decabromodiphenyl Ether (BDE-209), 243
- 9.10 Triclosan, 245
- 9.11 Conclusions and Future Prospects, 245 References, 246

10 Abiotic Degradations/Transformations of EDCs Through Oxidation Processes

- 10.1 Introduction, 254
- 10.2 Natural and Synthetic Estrogens, 256
 - 10.2.1 17 β -Estradiol (E2) and Estrone (E1), 256
 - 10.2.2 17α-Ethinylestradiol (EE2), 260
- 10.3 Bisphenol A, 260
 - 10.3.1 Chlorination with HOCI, 263
 - 10.3.2 Catalytic Oxidation with H₂O₂, 263
 - 10.3.3 Oxidation with $KMnO_4$, $2\dot{6}6$
 - 10.3.4 Oxidation with MnO₂, 267
 - 10.3.5 Treatment with Zero-Valent Aluminum, 267
 - 10.3.6 Ozonation, 267
 - 10.3.7 Fenton Reaction, 270
 - 10.3.8 Photolytic and Photocatalytic Degradation, 272
- 10.4 4-Octylphenol and 4-Nonylphenol, 272
 - 10.4.1 Chlorination, 272
 - 10.4.2 Ozonation, 274
 - 10.4.3 Photocatalytic Degradation, 274
- 10.5 Parabens, 274
 - 10.5.1 Ozonation, 276
 - 10.5.2 Photocatalytic Degradation, 276
- 10.6 Phthalates Photocatalytic Degradation, 276
 - 10.6.1 Dibutyl Phthalate (DBP), 277
 - 10.6.2 n-Butyl Benzylphthalate, 277
 - 10.6.3 Di(2-Ethylhexyl)phthalate (DEHP), 279
- 10.7 Linuron, 279
 - 10.7.1 Treatment with O₃, UV, and UV/O₃, 279
- 10.8 Atrazine, 281

- 10.8.1 Fenton Reaction, 281
- 10.8.2 Reaction with Ozone, Ozone/H₂O₂, and Ozone/OH Radicals, 282
- 10.8.3 Treatment with δ -MnO₂, 282
- 10.8.4 Reductive Dechlorination, 282
- 10.8.5 Photocatalytic Degradation, 282
- 10.9 Polybrominated Diphenyl Ether (PBDE) Flame Retardants, 282
 - 10.9.1 Photochemical Degradation, 282
 - 10.9.2 TiO₂-Mediated Photocatalytic Debromination, 284
 - 10.9.3 Zero-Valent Iron Reductive Debromination, 285
- 10.10 Triclosan, 285
 10.10.1 Clorination with HOCl, 285
 10.10.2 Oxidation with KMnO₄/MnO₂, 286
 10.10.3 Ozonation, 286
 10.10.4 Photochemical Transformation, 286
 10.11 PFOA and PFOS, 289
 10.111 Marking Line and Processing 200
 - 10.11.1 Modified Fenton Reaction, 289 10.11.2 Sonochemical Degradation, 289 10.11.3 Photocatalytic Reaction, 289
- 10.12 Conclusions, 289 References, 290

PART III	SCREENING AND TESTING FOR POTENTIAL EDCs,	
	IMPLICATIONS FOR WATER QUALITY	
	SUSTAINABILITY, POLICY AND REGULATORY ISSUES,	
	AND GREEN CHEMISTRY PRINCIPLES IN THE DESIGN	
	OF SAFE CHEMICALS AND REMEDIATION	
	OF EDCs 2	297

11 Screening and Testing Programs for EDCs

- 11.1 Introduction, 299
- 11.2 Endocrine Disruptor Screening Program (EDSP), 30011.2.1 EDSP Tier 1, 301
 - 11.2.2 EDSP Tier 2, 302
- 11.3 Assays for the Detection of Chemicals that Alter the Estrogen Signaling Pathway, 304
 - 11.3.1 The ER Binding Assay (USEPA OPPTS 890.1250), 304
 - 11.3.2 ERα Transcriptional Activation Assay (USEPA OPPTS 890.1300; OECD 455), 304
 - 11.3.3 Aromatase Assay (USEPA OPPTS 890.1200), 306
 - 11.3.4 *In vivo* Uterotrophic Bioassay in Rodents (USEPA OPPTS 890.1600; OECD 440), 307

320

- 11.3.5 Pubertal Female Rat Assay (USEPA OPPTS 890.1450), 308
- 11.3.6 Twenty-One-Day Fish Reproduction Assay (USEPA OPPTS 890.1350; OECD 229), 308
- 11.4 Assays for the Detection of Chemicals that Alter the Androgenic Signaling Pathway, 308
 - 11.4.1 AR Binding Assay (Rat Prostate Cytosol) (USEPA OPPTS 890.1150), 309
 - 11.4.2 H295R Steroidogenesis Assay (USEPA OPPTS 890.1550), 309
 - 11.4.3 Hershberger Bioassay in Rats for Androgenicity (USEPA OCSPP 890.1400; OECD 441), 309
 - 11.4.4 Pubertal Male Rat Assay (USEPA OPPTS 890.1500), 310
 - 11.4.5 Strengths and Limitations of Assays for Interference with Androgen Action, 310
- 11.5 Assays for the Detection of Chemicals that Alter the HPT Axis, 311
 - 11.5.1 Amphibian Metamorphosis Assay (OPPTS 890.1100), 311
 - 11.5.2 Strengths and Limitations of Thyroid Disrupting Chemical Assays, 311
- 11.6 The USEPA's EDSP21 Work Plan, 312
 - 11.6.1 The USEPA ToxCast Program, 313
 - 11.6.2 Tox21 HTS Programs, 314
- 11.7 Conclusions and Future Prospects, 316 References, 317

12 Trace Contaminants: Implications for Water Quality Sustainability

- 12.1 Introduction, 320
- 12.2 Trace Contaminants Sources in Water, 321
- 12.3 Wastewater Reclamation Processes, 323
 - 12.3.1 Primary Treatment: Sedimentation/Coagulation, 323
 - 12.3.2 Secondary Treatment: Removal by Physical Methods or Biological Process, 324
 - 12.3.3 Tertiary Treatment: Redox Processes, 325
- 12.4 Indirect Water Reuse Systems, 326
 - 12.4.1 Removal of Trace Contaminants for Potable Water Reuse Applications, 326
- 12.5 Leaching of Contaminants in Water the Case of Bottled Water, 327
- 12.6 Water Quality Sustainability and Health Effects, 328

- 12.7 Toxicological Implications, 329
- 12.8 Regulatory Structures to Maintain Water Quality, 330
- 12.9 Conclusions and Future Prospects, 331 References, 333

13 Policy and Regulatory Considerations for EDCs

339

- 13.1 Introduction, 339
- 13.2 Regulating Paradigm Shift in Conventional Toxicology, 340
 - 13.2.1 Downward Movement of Safe Thresholds, 341
 - 13.2.2 Nonmonotonic Low-Dose Effects (Nonthreshold substances), 341
 - 13.2.3 Sensitivity of Development Periods, 342
 - 13.2.4 Cumulative Exposures to Multiple EDCs (Exposures can be Additive), 342
 - 13.2.5 Long Latency Between Exposure and Effect (Delayed Effects), 343
- 13.3 Policy Options for EDC Regulation, 344
 - 13.3.1 Scientific Uncertainty and Precautionary Policy, 344
 - 13.3.2 Shifting the Burden of Proving Safe Products, 345
 - 13.3.3 Need to Broaden the Risk Assessment, 346
 - 13.3.4 Cutting-Edge Bioassays Showing Developmental Endpoints, 346
- 13.4 Controversy on Regulatory Framework for EDCs, 348
 - 13.4.1 Diversity of Viewpoints of the Risk Assessors and the Endocrine Scientists, 348
 - 13.4.2 A Debate on EU Regulatory Framework for EDCs, 350
- 13.5 Conclusions and Future Prospects, 351 References, 353

14 Green Chemistry Principles in the Designing and Screening for Safe Chemicals and Remediation of EDCs

357

- 14.1 Introduction, 357
- 14.2 Benign by Design Chemicals, 358
- 14.3 Chemical Endocrine Disruption Screening Protocol, 36114.3.1 Tiered Protocol for Endocrine Disruption, 361
- 14.4 Green Oxidative Remediation of EDCs, 36314.4.1 Catalytic Oxidation Processes, 364
- 14.5 Conclusions and Future Prospects, 366 References, 368

Index