## Mutation-Driven Evolution

## Masatoshi Nei

Pennsylvania State University



Mutation-Driven Evalution. First Edition. Masatoshi Nei. © Masatoshi Nei 2013. Published 2013 by Oxford University Press.

## Contents

| Preface |                                                                        |    |
|---------|------------------------------------------------------------------------|----|
| 1       | Selectionism and Mutationism                                           | 1  |
|         | 1.1 Darwin's Theory of Evolution                                       | 1  |
|         | 1.2 Criticisms of Darwin's Theory                                      | 2  |
|         | 1.3 Evolution by Discontinuous Variation                               | 3  |
|         | 1.4 Mutationism                                                        | 6  |
|         | 1.5 Neo-Darwinism                                                      | 7  |
|         | 1.6 Neomutationism or Mutation-Driven Evolution                        | 9  |
|         | 1.7 Survival of the Fittest and Survival of the Niche-Filling Variants | 9  |
| 2       | Neo-Darwinism and Panselectionism                                      | 13 |
|         | 2.1 Backgrounds                                                        | 13 |
|         | 2.2 Allele Frequency Changes as the Basic Process of Evolution         | 14 |
|         | Mutation                                                               | 14 |
|         | Natural Selection with Constant Fitness                                | 15 |
|         | Mutation-Selection Balance                                             | 17 |
|         | Balanced Polymorphism                                                  | 18 |
|         | Natural Selection for Multiple Loci                                    | 19 |
|         | 2.3 Difficulties of Defining and Estimating Selection Coefficients     | 20 |
|         | Estimates of Selection Coefficients and their Reliability              | 20 |
|         | Fluctuation of Selection Coefficients                                  | 22 |
|         | General Considerations                                                 | 23 |
|         | 2.4 Stochastic Changes of Allele Frequencies                           | 24 |
|         | Probability of Fixation of Mutant Alleles                              | 25 |
|         | Equilibrium Distribution of Allele Frequencies                         | 25 |
|         | Effective Population Size and Sampling Errors of Allele Frequencies    | 28 |
|         | Random Errors Caused by Fluctuation of Selection Coefficients          | 29 |
|         | 2.5 Mutation and Standing Genetic Variation                            | 31 |
|         | Artificial and Natural Selection in Quantitative Characters            | 31 |
|         | Evolution of Drug Resistance                                           | 34 |
|         | 2.6 Classical and Balance Theories of Maintenance of Genetic Variation | 34 |
|         | Genetic Load                                                           | 35 |
|         | Number of Alleles that can be Maintained in Finite Populations         | 36 |
|         | 2.7 Natural Selection as a Creative Force                              | 37 |
|         | 2.8 Summary                                                            | 39 |

| 3 | Evolutionary Theories in the Neo-Darwinian Era                   | 41 |
|---|------------------------------------------------------------------|----|
|   | 3.1 Modifier Genes                                               | 41 |
|   | Evolution of Dominance                                           | 42 |
|   | Modification of Linkage Intensity                                | 43 |
|   | 3.2 Fisher's Fundamental Theorem of Natural Selection            | 44 |
|   | 3.3 Cost of Natural Selection and Fertility Excess Required      | 46 |
|   | 3.4 Shifting Balance Theory of Evolution                         | 48 |
|   | 3.5 Accumulation of Nonfunctional and Deleterious Mutations      | 50 |
|   | Y Chromosomes                                                    | 50 |
|   | Nonfunctional Mutations in Duplicate Genes                       | 52 |
|   | Deleterious Mutations and Muller's Ratchet                       | 52 |
|   | 3.6 Bottleneck Effects and Genetic Variability                   | 53 |
|   | 3.7 Beanbag Genetics and Evolution                               | 56 |
|   | 3.8 Summary                                                      | 58 |
| 4 | Molecular Evolution                                              | 59 |
|   | 4.1 Early Studies of Molecular Evolution                         | 59 |
|   | 4.2 Neutral Evolution at the Protein Level                       | 60 |
|   | Cost of Natural Selection and Neutral Theory                     | 60 |
|   | Definition of Neutral Mutations                                  | 61 |
|   | King and Jukes's View                                            | 63 |
|   | Definition of Neutral Theory                                     | 64 |
|   | 4.3 Molecular Clocks                                             | 65 |
|   | Evolutionary Rate under Purifying Selection                      | 65 |
|   | Evolutionary Rate and Generation Time                            | 65 |
|   | Functional Constraints of Proteins                               | 66 |
|   | Variation in Mutation Rate                                       | 67 |
|   | Molecular Clocks and Neutral Theory                              | 68 |
|   | 4.4 Evolution of Protein-Coding Genes                            | 69 |
|   | General Properties of Evolution of Protein-Coding Genes          | 69 |
|   | Fast-Evolving Genes                                              | 70 |
|   | 4.5 Protein Polymorphism                                         | 70 |
|   | 4.6 Neutral Evolution at the DNA Level                           | 72 |
|   | Synonymous and Nonsynonymous Nucleotide Substitutions            | 72 |
|   | Pseudogenes as a Paradigm of Neutral Evolution                   | 72 |
|   | Slightly Deleterious or Nearly Neutral Mutations                 | 73 |
|   | 4.7 Advantageous Mutations                                       | 74 |
|   | Evolution of New Protein Function                                | 74 |
|   | Immune System Genes                                              | 78 |
|   | Trans-Species Polymorphism                                       | 79 |
|   | 4.8 Recent Statistical Studies for Detecting Positive Selection  | 81 |
|   | Bayesian Methods for Identifying Positively-Selected Codon Sites | 81 |
|   | MK Test and its Extensions                                       | 82 |
|   | Extended Haplotype Homozygosity and $F_{sT}$ Tests               | 84 |
|   | Statistical Studies and Biochemical Verification                 | 86 |
|   | Frequency Distributions of Mutant Nucleotides                    | 87 |
|   | 4.9 Summary                                                      | 87 |

| 5 | Gene Duplication, Multigene Families, and Repetitive DNA Sequences | 89  |
|---|--------------------------------------------------------------------|-----|
|   | 5.1 New Genes Generated by Gene Duplication                        | 89  |
|   | Increase in the Number of Genes by Gene Duplication                | 90  |
|   | Genome Size and Number of Genes                                    | 91  |
|   | Gene Numbers and Phenotypic Complexity                             | 92  |
|   | 5.2 Evolution of Multigene Families                                | 94  |
|   | 5.3 Concerted Evolution                                            | 95  |
|   | Unequal Crossover, Gene Conversion, and Purifying Selection        | 95  |
|   | Tandemly Arrayed Histone Genes                                     | 96  |
|   | 5.4 Birth-and-Death Evolution                                      | 97  |
|   | MHC Genes                                                          | 97  |
|   | Immunoglobulins and other Immune Systems Genes                     | 99  |
|   | Olfactory and other Chemosensory Receptor Genes                    | 101 |
|   | Birth-and-Death Evolution with Strong Purifying Selection          | 102 |
|   | 5.5 Multigene Families and Evolution of New Genetic Systems        | 103 |
|   | Adaptive Immune System                                             | 103 |
|   | Homeobox Genes Involved in Animal and Plant Development            | 104 |
|   | Multigene Families and Flower Development in Plants                | 105 |
|   | 5.6 Genomic Drift and Copy Number Variation                        | 105 |
|   | 5.7 Noncoding DNA and Transposable Genetic Elements                | 107 |
|   | Exons and Introns                                                  | 108 |
|   | Transposable Genetic Elements                                      | 109 |
|   | Tandem Repetitive Sequences                                        | 110 |
|   | 5.8 Summary                                                        | 110 |
| 6 | Evolution of Phenotypic Characters                                 | 113 |
|   | 6.1 Changing Concepts of the Gene and Gene Expression              | 113 |
|   | Definition of a Gene                                               | 113 |
|   | Protein-Coding and Regulatory Regions of Genes                     | 115 |
|   | Gene Regulatory Networks                                           | 116 |
|   | Small RNAs that Control the Level of Gene Expression               | 116 |
|   | Methylation and Epigenetics                                        | 117 |
|   | Signaling Pathways and Gene Interaction                            | 118 |
|   | 6.2 Evolution of Physiological and Morphological Characters        | 120 |
|   | Changes in the Protein-Coding Regions of Genes                     | 120 |
|   | Gene Regulation Hypothesis                                         | 122 |
|   | Major Gene Effect Hypothesis                                       | 126 |
|   | Gene Regulatory Networks and Morphological Evolution               | 128 |
|   | 6.3 Evolution of Gene Regulatory Systems                           | 129 |
|   | Cis-Regulatory Elements                                            | 129 |
|   | Evolutionary Change of MicroRNAs and other Small RNAs              |     |
|   | Controlling Gene Expression                                        | 130 |
|   | 6.4 Epigenetics and Phenotypic Evolution                           | 131 |
|   | Environmental Sex Determination                                    | 131 |
|   | Evolution of Temperature-Dependent Sex Determination               | 132 |
|   | Vernalization and Flowering in Plants                              | 132 |

|   | 6.5 | Gene Co-Option and Horizontal Gene Transfer                           | 133 |
|---|-----|-----------------------------------------------------------------------|-----|
|   |     | Gene Co-Option                                                        | 133 |
|   |     | Horizontal Gene Transfer                                              | 134 |
|   |     | Photosynthetic Animals                                                | 135 |
|   | 6.6 | Summary                                                               | 136 |
| 7 | Mut | tation and Selection in Speciation                                    | 137 |
|   | 7.1 | Speciation by Chromosomal Mutations                                   | 138 |
|   |     | Formation of New Species by Polyploidization                          | 138 |
|   |     | Changes of Genomic Structures and Speciation                          | 139 |
|   |     | Chromosomal Rearrangements and Speciation                             | 140 |
|   | 7.2 | Evolution of Reproductive Isolation by Genic Mutation                 | 141 |
|   |     | Oka Model of Speciation by Duplicate Gene Mutations                   | 141 |
|   |     | Dobzhansky-Muller (DM) Model of Evolution of Reproductive Isolation   | 143 |
|   |     | Multiallelic Complementary Genes Model                                | 146 |
|   |     | Single-Locus Speciation                                               | 148 |
|   | 7.3 | Reproductive Isolation by Complex Genetic Systems                     | 149 |
|   |     | Segregation Distorters and Speciation                                 | 149 |
|   |     | Heterochromatin-Associated Hybrid Incapacity                          | 150 |
|   |     | Other Mechanisms of Evolution of Reproductive Isolation               | 150 |
|   |     | Speciation by Bottleneck Effects                                      | 151 |
|   |     | Hybrid Sterility Generated by Passive Process of Phenotypic Evolution | 152 |
|   | 7.7 | Summary                                                               | 153 |
| 8 | Ada | ptation and Evolution                                                 | 155 |
|   | 8.1 | Adaptation by Mutation                                                | 155 |
|   | 8.2 | Evolution of Some Specific Characters                                 | 156 |
|   |     | Evolution of Eyes and Photoreceptors                                  | 156 |
|   |     | Evolution of Caste Systems in Honeybees and some other Insects        | 157 |
|   |     | Evolution of Asymmetric Morphology in Flatfish, Snails, and other     |     |
|   |     | Organisms                                                             | 161 |
|   | 8.3 | Regressive Evolution and Pseudogenes                                  | 162 |
|   |     | Universality of Vestigial Characters                                  | 162 |
|   |     | Molecular Basis of Regressive Evolution                               | 162 |
|   |     | Parasitic Organisms and their Genomic Changes                         | 165 |
|   | 8.4 | Evolution of Sex-Determination Mechanisms                             | 166 |
|   |     | Sex Determination in Vertebrates                                      | 167 |
|   |     | Sex Determination in Invertebrates                                    | 169 |
|   | 8.5 | Degeneration of the Y (W) Chromosome                                  | 171 |
|   |     | Y Degeneration and Dosage Compensation                                | 171 |
|   |     | Molecular Basis of X-Chromosome Dosage Compensation                   | 172 |
|   | 0.7 | Evolution by Sexually Antagonistic Mutations                          | 173 |
|   | 8.6 | Evolution of Behavioral Characters                                    | 174 |
|   |     | Selfish Gene Theory of Evolution                                      | 174 |
|   | 0 7 | Molecular Studies of Behavioral Genes                                 | 175 |
|   | 8.7 | Summary                                                               | 177 |

| CONTENTS <b>vii</b> |
|---------------------|
|---------------------|

| 9   | Mutation and Selection in Evolution                             | 179          |
|-----|-----------------------------------------------------------------|--------------|
|     | 9.1 Distinct Processes of Mutation and Selection                | 1 <b>7</b> 9 |
|     | 9.2 Random Factors and Gene Co-Option in Evolution              | 181          |
|     | 9.3 Retrospective and Prospective Studies of Evolution          | 182          |
|     | 9.4 Genomic Constraints and Constraint-Breaking Evolution       | 183          |
|     | Progressive Evolution                                           | 183          |
|     | Origin of Life Without Purpose                                  | 183          |
|     | Constraint-Breaking Evolution                                   | 184          |
|     | 9.5 Genetic Variation within Species                            | 185          |
|     | 9.6 Niche-Filling Evolution                                     | 186          |
| 10  | General Summary and Conclusion                                  | 189          |
| Ар  | pendix: Mathematical Notes                                      | 201          |
|     | A. Allele Frequency Changes Due to Natural Selection            | 201          |
|     | Deterministic Models for Allele Frequency Changes               | 201          |
|     | Equilibrium Frequencies Due to Mutation and Selection           | 201          |
|     | B. Allele Frequency Distributions under the Infinite-Site Model | 202          |
|     | C. Temporal Fluctuation of Selection Coefficients               | 202          |
|     | General Comments                                                | 202          |
|     | D. Artificial Selection for Quantitative Characters             | 203          |
|     | E. Genetic Load                                                 | 203          |
|     | Mutation Load                                                   | 204          |
|     | Segregation Load                                                | 204          |
|     | F. Bayesian Method of Detecting Positively Selected Codons      | 204          |
| Ref | erences                                                         | 207          |
| Aut | thor Index                                                      | 233          |
| Sub | oject Index                                                     | 238          |
|     |                                                                 |              |