Aquatic Entomology

Jill Lancaster and Barbara J. Downes

The University of Melbourne, Australia

Contents

Part 1 Introduction to Aquatic Insects

1	Inse	ect bod	y structure and the aquatic insect orders	3
	1.1	Introd	luction	3
	1.2	Insect	life cycle	4
	1.3	Insect	body plan	4
		1.3.1	Head	4
		1.3.2	Thorax	6
		1.3.3	Abdomen	7
	1.4	Aquat	tic insect orders	9
		1.4.1	Ephemeroptera—mayflies	9
		1.4.2	Odonata—dragonflies and damselflies	10
			Plecoptera—stoneflies	11
			Trichoptera—caddisflies	12
		1.4.5	Megaloptera—alderflies, dobsonflies, and fishflies	13
			Hemiptera—true bugs	14
			Lepidoptera—aquatic moths	15
			Diptera—true flies	15
			Neuroptera—lacewings and spongillaflies	16
			Coleoptera—beetles	17
		1.4.11	Rarely aquatic insects	18
2	Evo	lution,	biogeography, and aquatic insect distributions	20
	2.1	Introd	luction	20
	2.2	The fo	ssil record and establishing phylogenies	21
	2.3	Evolu	tion of the insects	22
	2.4	Histor	ry and evolution of aquatic habits	24
		2.4.1	The first aquatic insects	24
		2.4.2	Early freshwater feeding habits	26
	2.5	Histor	rical biogeography of aquatic insects	27
	2.6	Envir	onments inhabited by aquatic insects	28
			Flowing surface water: rivers and streams	29
		2.6.2	Standing surface water: lakes and ponds	3,0
		2.6.3	Wetlands, springs, pools, puddles, and phytotelmata	31

2.6.4 Gro	oundwater	32
2.6.5 Ma	arine environments, including estuaries	33
2.6.6 Ar	tificial human-made environments	34
Part 2 Enviror	nmental Constraints on Distribution	
3 Gas exchange	}	37
3.1 Introduct	ion	37
3.2 Diffusion	and the physical properties of gases	38
3.3 The trach		39
	acheae and tracheoles	39
3.3.2 Sp	iracles	40
_	ovement of gases within the tracheal system	40
3.4 Open trac		41
-	mplete dependence on atmospheric air	42
3.4.2 Co	ompressible gas gills	43
3.4.3 Pla	astrons and spiracular gills	45
3.5 Closed tra	acheal systems	47
3.5.1 Cu	urrents and ventilatory movements	48
3.6 Respiration	on when oxygen is scarce	50
3.7 Blood-bas	sed gas exchange	53
4 Physico-chem	nical gradients and extremes	54
4.1 Introduct	ion	54
4.2 Temperat		55
_	ermoregulation	56
	treme heat	58
4.2.3 Ex	treme cold	. 59
4.3 Water bal	lance	61
4.3.1 Wa	ater loss and gain	61
	cretion and osmoregulation	62
	on resistance and cryptobiosis	64
5 The biomecha	anics of living in and on water	65
5.1 Introduct	ion	65
	ysico-chemical properties of water	65
	still (or close to still) water	66
_	on the surface of water	67
_	ics of flowing water	70
	ynolds numbers, drag, and streamlining	70
	oundary layers and velocity gradients	71
	ons to living in water	73
~	ealing with drag at high <i>Re</i>	73
	owing and still water: Dealing with drag at low Re	78
	sing flow to feed	79

Part	3	Sensorv	Systems.	Movement,	and	Dispersal
	_		-yourse,		~~~	wiop crock

6	Sen	sory systems—photoreception	83
	6.1	83	
	6.2	Properties of light in water	84
		Structure of compound eyes	85
		Functioning of the compound eye	88
		6.4.1 Image formation	88
		6.4.2 Resolution	89
		6.4.3 Light sensitivity and adaptation	90
		6.4.4 Colour vision	91
		6.4.5 Polarization sensitivity	92
		6.4.6 Divided and specialized compound eyes	92
	6.5	Ocelli	94
	6.6	Stemmata	94
	6.7	Bioluminescence	97
7	Sen	sory systems—mechano- and chemoreception	99
	7.1	Introduction	99
	7.2	Mechanoreception	100
		7.2.1 Cuticular mechanoreceptors	101
		7.2.2 Chordotonal organs	103
	7.3	Communication via mechanical signals	108
		7.3.1 Hydrodynamic cues	108
		7.3.2 Substrate vibrations and percussion	109
		7.3.3 Stridulation	110
		7.3.4 Sound via vibration and tymbal mechanisms	111
		7.3.5 Air expulsion	112
	7.4	Chemoreception	112
		7.4.1 Olfactory and contact chemoreceptors	113
		7.4.2 Fluid mechanics of olfaction	115
		7.4.3 Thermo-hygroreceptors	116
	7.5	Function of chemoreception and chemical communication	117
		7.5.1 Perception of the environment	117
		7.5.2 Communication via chemical cues	117
8	Loc	omotion in and on water	119
	8.1	Introduction	119
	8.2	Basic leg structure and movement	119
		Movement in the water column—self-propelled	122
		8.3.1 Swimming using jointed appendages	122
		8.3.2 Swimming using undulations of the body	126
		8.3.3 Jet propulsion	128
		8.3.4 Vertical movement using changes in buoyancy	128
		8.3.5 Movement at low <i>Re</i>	128

8.4	Movement in the water column—exploiting water currents	129
	5 Movement over the substrate surface	130
	8.5.1 Walking and crawling	130
	8.5.2 Using silk	131
	8.5.3 Burrowing	132
8.6	6 Movement on the water's surface	132
	8.6.1 Surface walking, rowing, running, and jumping	133
	8.6.2 Skimming, sailing, and skating	134
	8.6.3 Meniscus climbing	135
	8.6.4 Marangoni propulsion	135
8.5	7 Hitching a ride: phoretic relationships	135
9 Dis	persal in the terrestrial environment	137
9.	1 Introduction	137
9.:	2 Wing structure and movement	137
9.	The principles of flight—lift and thrust	140
9.4	4 Dispersal by flying	143
	9.4.1 Wing morphology and flight capability	143
	9.4.2 Flight directions and distances	145
	9.4.3 Cues, attractions, and barriers	148
9.	5 Migration	150
9.	6 Flight polymorphisms	150
	9.6.1 Wing polymorphism	151
	9.6.2 Flight muscle polymorphism	151
	9.6.3 Flightlessness	152
9.	7 Dispersal by vectors	152
Part 4	Population Dynamics and Population Persistence	
10 Re	production and mating behaviour	157
10.	1 Introduction	157
10.	2 Female reproductive organs and egg formation	157
	10.2.1 Internal organs	158
	10.2.2 The mature egg	159
	10.2.3 Vitellogenesis and choriogenesis	159
	10.2.4 Form and function of the chorion	160
	3 Male reproductive organs	161
10.	4 Sexual maturation and fecundity	162
	10.4.1 Temperature	162
	10.4.2 Feeding versus stored energy reserves	163
10.	5 Aggregation and sexual communication	164
	10.5.1 Vision	165
	10.5.2 Vibrational signalling	165
	10.5.3 Sound communication	166
	10.5.4 Chemical communication	167

	10.6	Copulation and sperm transfer	168
		10.6.1 Copulation in Odonata	169
		Post-copulation behaviour and sexual selection	170
	10.8	Parthenogenesis	171
11	Ovip	osition and eggs	173
	11.1	Introduction	173
	11.2	Pre-oviposition	173
		11.2.1 Oviposition sites and strategies for oviposition	173
		11.2.2 Locating oviposition sites	175
		11.2.3 Mate guarding during oviposition	177
	11.3	Oviposition	178
		11.3.1 Oviposition mechanisms and controls	179
		11.3.2 Endophytic oviposition	179
		11.3.3 Unusual oviposition	180
	11.4	Post-oviposition eggs	180
		11.4.1 Gas exchange in eggs	180
		11.4.2 Egg coatings and accessory glands	182
		11.4.3 Attachment devices	18 4
		11.4.4 Floating eggs (rafts)	186
		11.4.5 Egg enemies and defences	186
	11.5	Parental care of eggs	189
12	Deve	elopment	190
	12.1	Introduction	190
		Embryogenesis to egg hatch	191
		Larval development	192
		12.3.1 Types of larvae	193
		12.3.2 Moulting	194
		12.3.3 Number of instars	196
	12.4	Metamorphosis of hemimetabolous insects	196
		12.4.1 Mayfly subimago and imago	196
	12.5	Metamorphosis and emergence of holometabolous insects	197
		12.5.1 Type of pupae, pupal cells, and pupation habits	198
		12.5.2 Prepupation and events prior to pupation	201
		12.5.3 Abiotic stress, gas exchange, and pupal enemies	201
		12.5.4 Eclosion: appearance of the adult	202
	12.6	Habitat transition	203
	12.7	Environmental influences on development	203
		12.7.1 Temperature	204
		12.7.2 Voltinism	204
		12.7.3 Dormancy, diapause, and quiescence	205
		12.7.4 Phases and control of diapause	206
	120	Life histories	206

Part 5 Trophic Relationships

13	Feed	ing devices and foraging strategies	211
	13.1	Introduction	211
	13.2	Food of aquatic insects	211
	13.3	Predators	213
		13.3.1 Engulfers	213
		13.3.2 Piercers	215
		13.3.3 Raptorial or prehensile appendages	216
	13.4	Parasites	217
	13.5	Shredders, chewers, and xylophages	218
	13.6	Algal piercers/bursters	219
	13.7	Grazers	219
	13.8	Collector-gatherers	222
	13.9	Filter feeders	223
		13.9.1 Filtering with body parts	223
		13.9.2 Filtering with tubes, burrows, and nets	224
		13.9.3 Feeding using filters	224
14	Diet,	, digestion, and defecation	226
	14.1	Introduction	226
	14.2	Structure of the alimentary system	226
		14.2.1 Preoral cavity	227
		14.2.2 Foregut	228
		14.2.3 Midgut	228
		14.2.4 Hindgut	229
	14.3	Gut structure and function of non-feeding insects	230
	14.4	Excretion and defecation	232
		14.4.1 Excretory organs and nitrogenous wastes	232
		14.4.2 Defecation	232
	14.5	Nutrition, digestion, and absorption	233
		14.5.1 Food quality	233
		14.5.2 Enzymes and food absorption	234
		14.5.3 Microorganisms and digestion	234
		14.5.4 Plant chemical compounds	236
Refe	erence	S	238
Index			275