

REVIEWS IN MINERALOGY
AND GEOCHEMISTRY

Volume 78 2014

Spectroscopic Methods in
Mineralogy and
Materials Sciences

EDITORS

Grant S. Henderson

*University of Toronto
Toronto, Canada*

Daniel R. Neuville

*IPGP-CNRS
Paris, France*

Robert T. Downs

*University of Arizona
Tucson, Arizona*

ON THE FRONT COVER:

The cover image shows a crystal of Fluorite, along with a ball and stick model of the structure overlain by the Raman spectrum. Courtesy of Joel Dyon, IPGP.

Series Editor: Jodi J. Rosso

MINERALOGICAL SOCIETY OF AMERICA
GEOCHEMICAL SOCIETY

Spectroscopic Methods in Mineralogy and Materials Sciences

78

Reviews in Mineralogy and Geochemistry

78

TABLE OF CONTENTS

1

Modern X-ray Diffraction Methods in Mineralogy and Geosciences

*Barbara Lavina, Przemyslaw Dera,
Robert T. Downs*

INTRODUCTION	1
GENERAL ASPECTS	2
Brief introduction to X-ray diffraction theory	2
Ideal structures, real structures, liquids	5
Information obtained from X-ray diffraction experiments	6
X-ray: characteristics, sources, choice	7
X-RAY DIFFRACTION TECHNIQUES	10
Single crystal monochromatic diffraction (SXD)	10
Laue method	13
Powder diffraction	15
Peak and whole pattern fitting	21
The atomic pair distribution function technique (PDF)	25
ACKNOWLEDGMENTS	27
REFERENCES	27

2

Fundamentals of XAFS

Matthew Newville

INTRODUCTION	33
X-RAY ABSORPTION AND FLUORESCENCE	35
A SIMPLE THEORETICAL DESCRIPTION OF XAFS	40
A rough explanation of the EXAFS equation	42
The EXAFS $\chi(E)$ is proportional to the amplitude of the scattered photoelectron at the absorbing atom	43
$\lambda(k)$: The inelastic mean free path	44
S_0^2 : intrinsic losses	45
Multiple scattering of the photoelectron	46

Disorder terms and $g(R)$	46
Discussion	48
XAFS MEASUREMENTS: TRANSMISSION AND FLUORESCENCE.....	49
Transmission XAFS measurements.....	51
Fluorescence and electron yield XAFS measurements	51
Self-absorption (or over-absorption) of fluorescence XAFS.....	54
Deadtime corrections for fluorescence XAFS.....	56
XAFS DATA REDUCTION	57
Pre-edge subtraction and normalization	58
Background subtraction	59
EXAFS Fourier transforms.....	62
XAFS DATA MODELING	65
Running and using FEFF for EXAFS calculations	65
First-shell fitting	66
Fit statistics and estimated uncertainties	67
Second-shell fitting.....	70
REFERENCES	73

3 X-ray Absorption Near-Edge Structure (XANES) Spectroscopy

*Grant S. Henderson, Frank M.F. de Groot,
Benjamin J.A. Moulton*

PREFACE	75
INTRODUCTION	76
Interaction of X-rays with matter	76
Binding energy	76
Single electron excitation approximation and selection rules	77
Calculations of XANES spectra	77
EXPERIMENTAL ASPECTS OF XANES	78
Doing a XANES experiment at a beamline.....	78
Data reduction	79
XANES DETECTION MODES	80
Transmission detection of XANES	80
Electron yield detection of XANES	80
Fluorescence yield detection of XANES.....	81
Partial Fluorescence Yield detection of XANES	81
Electron energy loss spectroscopy and X-ray Raman	81
XANES microscopy	82
XANES ANALYSIS OF METAL K-EDGES	82
Special energy positions of X-ray absorption edges	82
The pre-edge region.....	83
The edge region and peaks at higher energies in the XANES region	84
XANES analysis of metal L-edges.....	85
Multiplet analysis of L-edges	85
ALITATIVE SPECTRAL ANALYSIS OF THE L-EDGES	86
Energy shifts	86

Intensities of the <i>L</i> -edges.....	86
The branching ratio.....	86
Polarization dependence and XMCD	86
XANES ANALYSIS OF LIGAND <i>K</i>-EDGES	86
APPLICATIONS OF XANES IN MINERALOGY AND GEOCHEMISTRY	86
Transition metals: <i>K</i> -edges	86
Transition metals: <i>L</i> -edges.....	92
Silicon and aluminum <i>K</i> - and <i>L</i> -edges	94
Alkalais (Li, Na, K, Rb, Cs).....	100
Alkaline-Earths (Be, Ca, Mg, Sr, Ba).....	102
Ligand edges (C, O, B, S, P)	106
SOME EXAMPLES OF STUDIES UTILIZING XANES	121
Assessing trace element substitution in minerals: Cerium speciation ($\text{Ce}^{3+}/\text{Ce}^{4+}$) in Ti-rich minerals	121
Assessing changes in oxidation state of Nb and Ta with varying f_{o} at 1.5 GPa as a possible explanation for the negative Nb/Ta anomaly or “arc signature” of melts	122
<i>In situ</i> high-temperature determination of Cr oxidation state in basaltic melts: A novel XANES furnace design	123
The behavior of Br in CO_2 -bearing fluids in low-temperature geological settings: A Br <i>K</i> -edge study on synthetic fluid inclusions	124
ACKNOWLEDGMENTS.....	125
REFERENCES	125

4

Probing of Pressure-Induced Bonding Transitions in Crystalline and Amorphous Earth Materials: Insights from X-ray Raman Scattering at High Pressure

Sung Keun Lee, Peter J. Eng, Ho-kwang Mao

INTRODUCTION	139
BRIEF REMARKS ON THEORETICAL BACKGROUNDS AND	
XRS EXPERIMENTS AT HIGH PRESSURE.....	141
Brief theoretical backgrounds	141
Comparison with other core-electron excitation spectroscopy and traditional experimental probes at high pressure.....	143
XRS experiments	146
PRESSURE-INDUCED STRUCTURAL CHANGES IN CRYSTALLINE AND	
AMORPHOUS EARTH MATERIALS: INSIGHTS FROM X-RAY RAMAN	
SCATTERING	147
Application of <i>K</i> -edge XRS to materials under high pressure	148
Insights from quantum chemical calculations	161
REMAINING CHALLENGES AND OUTLOOK: APPLICATIONS OF NEW <i>K</i>-, <i>L</i>-,	
<i>M</i>-EDGE XRS, XRS WITH MOMENTUM TRANSFER, <i>IN SITU</i> HIGH-	
TEMPERATURE AND HIGH-PRESSURE XRS STUDY FOR	
MULTI-COMPONENTS GLASSES	164

6**Analytical Transmission Electron Microscopy***Rik Brydson, Andy Brown,
Liane G. Benning, Ken Livi*

INTRODUCTION	219
INTRODUCTION TO ANALYTICAL	
TRANSMISSION ELECTRON MICROSCOPY (TEM)	219
Basic design of transmission electron microscopes (TEM)	219
Interactions between the electron beam and the specimen.....	222
The specimen.....	227
Recent developments in analytical TEM.....	228
ELEMENTAL QUANTIFICATION – EDX AND EELS	229
EDX.....	229
Example of the practical application of EDX: clay minerals.....	232
EELS	236
EEL SPECTROMETRY	239
EEL low-loss spectroscopy	239
EELS core-loss fine structure	242
EDX AND EELS IMAGING.....	245
EXAMPLE OF THE PRACTICAL APPLICATION OF EELS:	
EELS OF MANGANESE IN MINERALS AND ENVIRONMENTAL HEALTH	247
Introduction	247
Analytical considerations for EELS determination of manganese valence.....	247
Near edge structure of Mn $M_{2,3}$ -edge.....	248
Near edge structure of Mn $L_{2,3}$ -edge	248
Quantification of valence by $L_{2,3}$ -ELNES	249
Beam damage	251
Applications.....	252
GENERAL APPLICATION OF EELS, SAED AND EDX.....	253
Use of (S)TEM to assess transport and retardation mechanisms of	
trace metal contaminants	253
Developments in TEM specimen preparation	255
Developments in analyzing poorly crystalline, beam sensitive materials	261
CONCLUSIONS.....	263
REFERENCES	265

7**High Resolution Core- and Valence-Level XPS
Studies of the Properties (Structural, Chemical
and Bonding) of Silicate Minerals and Glasses***H.W. Nesbitt, G.M. Bancroft*

INTRODUCTION	271
XPS studies of silicates	271
Technical advances	272
Focus of the review	273

FUNDAMENTAL PRINCIPLES OF XPS	273
Photoionization and analysis depths.....	273
Non-conductors and sample charging	275
Photopeak assignments and intensities.....	276
Depth of analysis	277
Linewidths	277
Si 2p AND O 1s LINETHICKNESSES: EXPERIMENT AND THEORY	282
Evidence for minimum linewidths for silicates	282
Si 2p vibrational contributions.....	287
O 1s vibrational contributions	289
Effects of phonon broadening	289
Experimental and fitting considerations	290
Chemical shifts in silicates	291
Surface core-level shifts in silicates	292
CORE LEVEL BULK APPLICATIONS.....	294
Crystalline silicates.....	294
Silicate glasses: general aspects	297
Silicate glasses: O 1s spectra, and NBO and BO linewidths ..	303
Silicate glasses: uncertainties in BO% from O 1s spectra.....	305
Determination of free oxide O ²⁻ and its importance	309
CORE LEVEL SURFACE STUDIES OF SILICATES	312
Adsorption on silicate and oxide surfaces	312
Leaching of silicates	314
VALENCE LEVEL BULK APPLICATIONS	317
Nature of the contributions to the valence band	317
ACKNOWLEDGEMENTS	323
REFERENCES	323

8 Analysis of Mineral Surfaces by Atomic Force Microscopy

Jacques Jupille

INTRODUCTION	331
EXPERIMENTAL METHODS	332
AFM set-ups	333
Experimental conditions	337
DISSOLUTION, PRECIPITATION AND GROWTH	338
Determination of reaction rates at crystal surfaces from step velocities	339
Size and shape of clay minerals	343
Limits of the AFM observation	343
AFM rates versus bulk rates	346
FORCE MEASUREMENTS	347
Hydration forces	348
Determination of the point of zero charge (PZC)	349
Kelvin Force Probe Microscopy (KPFM)	351
ATOMICALLY RESOLVED SURFACE STRUCTURES	354
Structures in contact mode	354

Surface structures analyzed by AFM in dynamic mode.....	355
CONCLUSIONS.....	360
ACKNOWLEDGMENTS.....	362
REFERENCES	363

9

Optical Spectroscopy

George R. Rossman

INTRODUCTION	371
GENERAL CONCEPTS	372
UNITS	375
Wavelength and energy.....	375
Intensities.....	375
THE EXPERIMENT – SAMPLE AND EQUIPMENT CONSIDERATIONS	376
Types of spectrometers	376
NOMENCLATURE OF THE DIFFERENT SPECTRA.....	377
INTENSITIES AND SELECTION RULES.....	377
The Laporte selection rule	377
Spin-forbidden transitions	378
QUANTITATIVE CONCENTRATIONS FROM OPTICAL SPECTRA	378
IDENTIFICATION OF THE OXIDATION STATES OF CATIONS.....	379
A GALLERY OF SPECTRA OF METAL IONS COMMONLY RESPONSIBLE FOR THE OPTICAL SPECTRA OF MINERALS	379
Titanium.....	379
Vanadium.....	379
Chromium.....	380
Manganese.....	381
Iron	382
Cobalt	384
Nickel	384
Copper	384
Rare Earth Elements and Uranium	386
INTERVALENCE CHARGE TRANSFER	388
Intervalence charge transfer in low-symmetry crystals	388
BAND GAPS	390
RADIATION-INDUCED COLOR CENTERS	390
VIBRATIONAL OVERTONES AND COMBINATIONS	392
ARTIFACTS	392
Interference fringes.....	392
Wood's grating anomaly	393
TEMPERATURE AND PRESSURE DEPENDENCE	393
ABSORPTION BAND INTENSIFICATION	394
COMPILEATIONS OF MINERAL OPTICAL SPECTRAL DATA	395
CONCLUDING THOUGHTS.....	396
REFERENCES	397

10

Spectroscopy from Space

*Roger N. Clark, Gregg A Swayze,
Robert Carlson,
Will Grundy, Keith Noll*

ABSTRACT	399
INTRODUCTION	400
DETECTION OF MINERALS AND THEIR SPECTRAL PROPERTIES	402
MINERAL AND FROZEN VOLATILES SPECTRAL SIGNATURES	406
H ₂ O (ice)	406
SO ₂ ice	406
Nitrogen ice (N ₂)	406
Hydrocarbons and other ices	407
Methane ice (CH ₄)	408
MINERALS AND COMPOUNDS IN THE SOLAR SYSTEM	
DETECTED WITH SPECTROSCOPY	408
Terrestrial planets	408
Asteroids and comets	415
Jupiter system	416
Saturn system	422
Uranus system	427
The Neptune system and beyond	428
SUMMARY	430
ACKNOWLEDGMENTS	431
REFERENCES	432

11

SR-FTIR Microscopy and FTIR Imaging in the Earth Sciences

*Giancarlo Della Ventura, Augusto Marcelli,
Fabio Bellatreccia*

INTRODUCTION	447
FTIR MICROSCOPY AND IMAGING TECHNIQUES	449
SYNCHROTRON-RADIATION FTIR SPECTROSCOPY IN MINERAL SCIENCES	453
Introduction	453
Applications in mineral sciences	455
FTIR IMAGING	464
Introduction	464
The distribution of H and C in minerals	465
Imaging of inclusions in minerals	468
FTIR imaging of dynamic processes	472
CONCLUSIONS	474
ACKNOWLEDGMENTS	474
REFERENCES	474

12

Carryover of Sampling Errors and Other Problems in Far-Infrared to Far-Ultraviolet Spectra to Associated Applications

Anne M. Hofmeister

INTRODUCTION AND PURPOSE	481
EXPERIMENTAL METHODS	482
EXTRACTION OF SPECTRAL PROPERTIES FROM LABORATORY MEASUREMENTS	482
Ideal interactions of light with perfect, single crystals	482
Limitations of real measurements	488
Errors originating in instrumentation	488
Concerns in obtaining quantitative spectra from powders	489
Concerns regarding thin-film spectra obtained in the diamond anvil cell	490
Propagation of errors	491
Errors arising during data processing and extracting spectral parameters	491
Emission spectra	492
EXAMPLES OF SAMPLING PROBLEMS IN THE LABORATORY	497
Overly large grains in absorbing regions	497
Too small of crystals for the near-IR transparent region	497
Information on <i>d-d</i> transitions in the UV may pertain to band assignments	499
REMOTELY SENSED SPECTRA AND OBSERVATIONAL DATA	500
Ascertaining surface mineralogy of large bodies	501
Ascertaining the mineralogy of the 10 μm feature in observational data	503
DEDUCING DIFFUSIVE RADIATIVE TRANSFER FROM SPECTRA	504
CONCLUSIONS	505
ACKNOWLEDGMENTS	505
REFERENCES	506

13

Advances in Raman Spectroscopy Applied to Earth and Material Sciences

*Daniel R. Neuville, Dominique de Ligny,
Grant S. Henderson*

BRIEF HISTORICAL PERSPECTIVE AND SIMPLE THEORY	509
Quantum mechanical theory	512
INSTRUMENTATION	513
Excitation line	513
Notch filters, optical spectrometer or grating	514
Optics, monochromators, detectors	515
Different manufacturers and instrument types	515
Confocal system	516
Data acquisition and reduction	517
Baseline correction and normalization	521

OTHER TYPES OF RAMAN SPECTROSCOPY	521
Hyper-Raman scattering (HRS)	521
Surface Enhanced Raman Scattering (SERS)	522
APPLICATIONS.....	523
Crystalline spectra	523
Amorphous materials.....	524
Silicate glasses.....	524
Aluminosilicate glasses	528
Borosilicate glasses	529
Titanosilicate glasses	530
Iron silicate glasses.....	530
Volatiles in glasses.....	531
Fluid inclusions	532
<i>In situ</i> Raman spectroscopy	533
CONCLUSIONS.....	536
REFERENCES	536

14 Brillouin Scattering and its Application in Geosciences

*Sergio Speziale, Hauke Marquardt,
Thomas S. Duffy*

INTRODUCTION	543
HISTORICAL BACKGROUND	544
PHYSICAL PRINCIPLES OF THE BRILLOUIN EFFECT	545
Brillouin scattering in fluids	547
Brillouin scattering in solids.....	549
BRILLOUIN SPECTROSCOPY	551
Basic experimental setup	551
Light source	552
Scattering geometry	552
The spectrometer	553
Detectors.....	556
Measurements on transparent materials	557
Measurements of surface Brillouin scattering on opaque materials and thin films	558
Brillouin scattering at ambient or near-ambient conditions	562
Determination of Pockel's coefficients	566
Brillouin scattering at extreme conditions.....	566
ANALYSIS OF THE BRILLOUIN SPECTRA AND RECOVERY OF THE ELASTIC TENSOR.....	571
Linear elasticity of anisotropic solids.....	572
Determining the elastic constants.....	573
What is the information from Brillouin scattering that is relevant to Earth science?	576
APPLICATIONS OF BRILLOUIN SPECTROSCOPY IN GEOSCIENCES	577
Experimental techniques to determine the anisotropic elasticity of Earth materials	577

Lithosphere and upper mantle	580
Transition zone	581
Lower mantle	582
FRONTIERS	583
Elasticity under deep mantle conditions	583
Combining Brillouin scattering with other techniques to characterize elastic anisotropy at high pressures	587
Surface Brillouin scattering at extreme conditions	587
ACKNOWLEDGMENTS	588
REFERENCES	588

15

NMR Spectroscopy of Inorganic Earth Materials

Jonathan F. Stebbins, Xianyu Xue

INTRODUCTION	605
THE BASICS	606
Nuclear spins, NMR frequencies and signal intensities	606
How NMR experiments are done	610
Anisotropy, motional averaging, and magic-angle spinning	611
CHEMICAL SHIFT VS. STRUCTURE	612
QUADRUPOLAR INTERACTIONS AND STRUCTURE	615
MAGNETIC DIPOLAR INTERACTIONS AND INDIRECT	
SPIN-SPIN COUPLINGS	619
MORE ADVANCED NMR METHODS	621
FIRST-PRINCIPLES CALCULATIONS OF NMR PARAMETERS	624
NUCLEAR SPIN RELAXATION	624
APPLICATIONS TO CRYSTALLINE SILICATES, OXIDES AND	
OTHER INORGANIC MATERIALS	625
Structural order/disorder in minerals	625
¹ H NMR in minerals	629
NMR crystallography	631
APPLICATIONS TO GLASSES, MELTS AND OTHER AMORPHOUS MATERIALS ..	631
Volatile-free silicate glasses	631
Volatile-containing glasses	635
Other amorphous materials	636
Silicate and oxide melts	637
DYNAMICS, KINETICS AND TRANSITIONS	638
Phase transitions	638
Interactions of water with minerals and glasses	638
Aqueous solutions: ambient to elevated pressures	639
MINERALS CONTAINING ABUNDANT UNPAIRED ELECTRON SPINS	640
ACKNOWLEDGMENTS	642
REFERENCES	642

16

Electron Paramagnetic Resonance Spectroscopy: Basic Principles, Experimental Techniques and Applications to Earth and Planetary Sciences

Yuanming Pan, Mark J. Nilges

INTRODUCTION	655
BASIC PRINCIPLES AND SPIN HAMILTONIAN	656
Electron resonance condition and EPR spectra	656
Spin Hamiltonian	657
GUIDES TO EPR EXPERIMENTS AND SPECTRAL ANALYSES	662
Samples and techniques for generating paramagnetic species	662
Continuous-wave (CW) EPR	663
Pulse ESEEM and ENDOR	667
<i>Ab initio</i> calculations of EPR parameters	672
APPLICATIONS TO EARTH AND PLANETARY SCIENCES	673
EPR as a structural probe of point defects in minerals	673
<i>In situ</i> high-temperature and high-pressure EPR experiments	675
Optically detected magnetic resonance (ODMR) and mineral coloration	680
EPR as structural probe for other Earth and planetary materials	680
Quantitative EPR analysis	682
ACKNOWLEDGMENTS	684
REFERENCES	684

17

Theoretical Approaches to Structure and Spectroscopy of Earth Materials

Sandro Jahn, Piotr M. Kowalski

INTRODUCTION	691
THEORETICAL FRAMEWORK	692
Quantum-chemical methods	693
Density Functional Theory (DFT)	696
Excitation methods	702
Classical force field methods	705
Molecular dynamics	707
STRUCTURE DETERMINATION AND OPTIMIZATION	708
VIBRATIONAL SPECTRA	712
Lattice dynamics in the harmonic approximation	713
Atomic dynamics via time correlation functions	714
Infrared absorption spectroscopy	717
Raman spectra	719
ELECTRONIC EXCITATION SPECTRA	721
UV-vis	721
XAFS and XRS	723
EELS and ELNES	726
XPS	727

SPECTROSCOPY RELATED TO NUCLEAR EXCITATIONS	728
NMR	728
Mössbauer spectroscopy	731
CONCLUDING REMARKS	731
ACKNOWLEDGMENTS	732
REFERENCES	732

18

High-pressure Apparatus Integrated with Synchrotron Radiation

Guoyin Shen, Yanbin Wang

INTRODUCTION	745
SYNCHROTRON TECHNIQUES APPLICABLE TO HIGH-PRESSURE RESEARCH	746
Synchrotron radiation	746
High-pressure synchrotron techniques	748
HIGH PRESSURE TECHNIQUES INTEGRATED WITH SYNCHROTRON RADIATION	757
The large volume press (LVP)	757
Diamond anvil cell techniques	763
Dynamic shockwave techniques	766
A BRIEF OUTLOOK	767
Expanding P - T range	767
New HP synchrotron techniques	767
ACKNOWLEDGMENTS	768
REFERENCES	768

19

In situ High-Temperature Experiments

*Daniel R. Neuville, Louis Hennet,
Pierre Florian, Dominique de Ligny*

PREFACE	779
INTRODUCTION	779
LEVITATION TECHNIQUES	780
Introduction	780
Acoustic levitation	781
Electromagnetic levitation	781
Electrostatic levitation	781
Aerodynamics levitation	782
Experimental techniques	784
APPLICATIONS OF AERODYNAMICS LEVITATION	784
NMR experiments	784
X-ray absorption spectroscopy (XAS)	786
SAXS and SANS	787
X-ray and neutron diffraction	787

Spectroscopic Methods – Table of Contents

WIRE OR PLATE HEATING SYSTEM.....	788
Description, temperature and atmosphere control.....	788
Raman spectroscopy.....	790
X-ray diffraction.....	791
X-ray absorption.....	794
ADVANTAGES, DIFFERENCES AND CONCLUSIONS.....	795
ACKNOWLEDGMENTS.....	797
REFERENCES	797