Phasing in Crystallography

A Modern Perspective

CARMELO GIACOVAZZO

Professor of Crystallography, University of Bari, Italy Institute of Crystallography, CNR, Bari, Italy

Symbols and notation

1	Fur	ndamentals of crystallography	1
	1.1	Introduction	1
	1.2	Crystals and crystallographic symmetry in direct space	1
	1.3	The reciprocal space	5
	1.4	The structure factor	11
	1.5	Symmetry in reciprocal space	12
		1.5.1 Friedel law	12
		1.5.2 Effects of symmetry operators in reciprocal space	12
		1.5.3 Determination of reflections with restricted phase values	13
		1.5.4 Systematic absences	15
	1.6	The basic postulate of structural crystallography	17
	1.7	The legacy of crystallography	24
2	Wi	son statistics	27
	2.1	Introduction	27
	2.2	Statistics of the structure factor: general considerations	28
	2.3	Structure factor statistics in $P1$ and $P\overline{1}$	29
	2.4	The $P(z)$ distributions	35
	2.5	Cumulative distributions	35
	2.6	Space group identification	36
	27	The centric or acentric nature of crystals: Wilson statistical analysis	42

2.7	The centric or acentric nature of crystals: Wilson statistical analysis	42
2.8	Absolute scaling of intensities: the Wilson plot	43
2.9	Shape of the Wilson plot	47

2.9	Shape of the Wilson plot	47
2.10	Unit cell content	49
Appe	ndix 2.A Statistical calculations in P1 and P1	50
2.A.1	Structure factor statistics in P1	50
2.A.2	Structure factor statistics in P1	52
Appe	ndix 2.B Statistical calculations in any space group	53
2.B.1	The algebraic form of the structure factor	53
2.B.2	Structure factor statistics for centric and acentric space groups	55
Appe	ndix 2.C The Debye formula	58

3	The origin problem, invariants, and seminvariants		
	3.1	Introduction	60
	3.2	Origin, phases, and symmetry operators	61

	3.3 The concept of structure invariant	63
	3.4 Allowed or permissible origins in primitive space groups	65
	3.5 The concept of structure seminvariant	69
	3.6 Allowed or permissible origins in centred cells	76
	3.7 Origin definition by phase assignment	81
4	The method of joint probability distribution	
	functions, neighbourhoods, and representations	83
	4.1 Introduction	83
	4.2 Neighbourhoods and representations	87
	4.3 Representations of structure seminvariants	89
	4.4 Representation theory for structure invariants extended to	
	isomorphous data	91
	Appendix 4.A The method of structure factor joint probability	
	distribution functions	93
	4.A.1 Introduction	93
	4.A.2 Multivariate distributions in centrosymmetric structures:	
	the case of independent random variables	94

	the case of independent random variables	94
4.A.3	Multivariate distributions in non-centrosymmetric	
	structures: the case of independent random variables	97
4.A.4	Simplified joint probability density functions in the	
	absence of prior information	99
4 A 5	The joint probability density function when some prior	

4.11.5	The joint probability density function when some prior	
	information is available	102
4.A.6	The calculation of $P(E)$ in the absence of prior	
	information	103

5 The probabilistic estimation of triplet and quartet invariants

5.1	Introduction	104
5.2	Estimation of the triplet structure invariant via its first	
	representation: the P1 and the $P\overline{1}$ case	104
5.3	About triplet invariant reliability	108
5.4	The estimation of triplet phases via their second representation	110
5.5	Introduction to quartets	112
5.6	The estimation of quartet invariants in P1 and $P\overline{1}$ via their	
	first representation: Hauptman approach	112
5.7	The estimation of quartet invariants in P1 and $P\overline{1}$ via their	
	first representation: Giacovazzo approach	115
5.8	About quartet reliability	116
App	endix 5.A The probabilistic estimation of the triplet	
	invariants in P1	117
App	pendix 5.B Symmetry inconsistent triplets	120
App	pendix 5.C The P_{10} formula	121
App	pendix 5.D The use of symmetry in quartet estimation	123

		Contents	xiii
Tro	aditio	nal direct phasing procedures	125
6.1	Introd	luction	125
6.2	The ta	angent formula	128
6.3	Proce	dure for phase determination via traditional direct	
	metho	ods	130
	6.3.1	Set-up of phase relationships	131
	6.3.2	Assignment of starting phases	134
	6.3.3	Phase determination	136
	6.3.4	Finding the correct solution	137
	6.3.5	E-map interpretation	138
	6.3.6	Phase extension and refinement: reciprocal space techniques	140
	6.3.7	The limits of the tangent formula	141
6.4	Third	generation direct methods programs	144
	6.4.1	The shake and bake approach	144
	6.4.2	The half-bake approach	147
	6.4.3	The SIR2000-N approach	148
Ар	pendix	6.A Finding quartets	149

151

192

193

196

7	Joint probability distribution functions when a model is available: Fourier syntheses	
	7.1 Introduction	

6

	7.1 Introduction	151
	7.2 Estimation of the two-phase structure invariant $(\phi_{\rm h} - \phi_{\rm oh})$	152
	7.3 Electron density maps	155
	7.3.1 The ideal Fourier synthesis and its properties	156
	7.3.2 The observed Fourier synthesis	162
	7.3.3 The difference Fourier synthesis	164
	7.3.4 Hybrid Fourier syntheses	166
	7.4 Variance and covariance for electron density maps	168
	7.5 Triplet phase estimate when a model is available	170
	Appendix 7.A Estimation of σ_A	173
	Appendix 7.B Variance and covariance expressions for electron	
	density maps	174
	Appendix 7.C Some marginal and conditional	
	probabilities of $P(R, R_p, \phi, \phi_p)$	176
8	Phase improvement and extension	177
	8.1 Introduction	177
	8.2 Phase extension and refinement via direct space procedures:	
	EDM techniques	177
	8.3 Automatic model building	184
	8.4 Applications	188
	Appendix 8.A Solvent content, envelope definition, and solvent modelling	190
	8.A.1 Solvent content according to Matthews	1 9 0
	8.A.2 Envelope definition	191

Appendix 8.BHistogram matchingAppendix 8.CA brief outline of the ARP/wARP procedure

8.A.3 Models for the bulk solvent

9	Charge flipping and VLD (vive la difference)	198
	9.1 Introduction	198
	9.2 The charge flipping algorithm	199
	9.3 The VLD phasing method	201
	9.3.1 The algorithm	201
	9.3.2 VLD and hybrid Fourier syntheses	205
	9.3.3 VLD applications to ab initio phasing	205
	Appendix 9.A About VLD joint probability distributions	200
	9.A.1 The VLD algorithm based on difference Fourier synthesis	206
	Appendix 9.B The <i>RELAX</i> algorithm	212
10	Patterson methods and direct space properties	214
	10.1 Introduction	214
	10.2 The Patterson function	215
	10.2.1 Mathematical background	215
	10.2.2 About interatomic vectors	216
	10.2.3 About Patterson symmetry	217
	10.3 Deconvolution of Patterson functions	218
	10.3.1 The traditional heavy-atom method	219
	10.3.2 Heavy-atom search by translation functions	220
	10.3.3 The method of implication transformations	221
	10.3.4 Patterson superposition methods	223
	10.3.5 The C-map and superposition methods	225
	10.4 Applications of Patterson techniques	227
	Appendix 10.A Electron density and phase relationships Appendix 10.B Patterson features and phase relationships	230
11	Phasing via electron and neutron diffraction data	234
	11.1 Introduction	234
	11.2 Electron scattering	235
	11.3 Electron diffraction amplitudes	230
	11.4 Non-kinematical character of electron diffraction amplitudes	237
	11.5 A traditional experimental procedure for electron	
	diffraction studies	239
	11.6 Electron microscopy, image processing, and phasing methods	24
	11.7 New experimental approaches: precession and rotation cameras	244
	11.8 Neutron scattering	24
	11.9 Violation of the positivity postulate	24'
	Appendix 11.A About the elastic scattering of electrons: the kinematical approximation	249
12	Phasing methods for powder data	25
	12.1 Introduction	25
		<i></i>

12.2 About the diffraction pattern, peak overlapping 25	12.2	About the diffraction pattern: peak overlapping	253
---	------	---	-----

•

12.3	Modelling the diffraction pattern	258
12.4	Recovering $ F_{hkl} ^2$ from powder patterns	260
12.5	The amount of information in a powder diagram	263
12.6	Indexing of diffraction patterns	264
12.7	Space group identification	266
12.8	Ab initio phasing methods	267
12.9	Non-ab initio phasing methods	270
Appe	ndix 12.A Minimizing texture effects	272

13 Molecular replacement

13.1 Introduction	275
13.2 About the search model	277
13.3 About the six-dimensional search	279
13.4 The algebraic bases of vector search techniques	280
13.5 Rotation functions	282
13.6 Practical aspects of the rotation function	284
13.7 The translation functions	286
13.8 About stochastic approaches to MR	289
13.9 Combining MR with 'trivial' prior information: the	
ARCIMBOLDO approach	289
13.10 Applications	291
Appendix 13.A Calculation of the rotation function in	
orthogonalized crystal axes	294
13.A.1 The orthogonalization matrix	294
13.A.2 Rotation in Cartesian space	295
13.A.3 Conversion to fractional coordinates	297
13.A.4 Symmetry and the rotation function	299
Appendix 13.B Non-crystallographic symmetry	304
13.B.1 NCS symmetry operators	304
13.B.2 Finding NCS operators	305
13.B.3 The translational NCS	308
Appendix 13.C Algebraic forms for the rotation and translation functions	311

14	Isomorphous replacement techniques	314
	14.1 Introduction	314
	14.2 Protein soaking and co-crystallization	315
	14.3 The algebraic bases of SIR techniques	317
	14.4 The algebraic bases of MIR techniques	320
	14.5 Scaling of experimental data	322
	14.6 The probabilistic approach for the SIR case	323
	14.7 The probabilistic approach for the MIR case	327
	14.8 Applications	329
	Appendix 14.A The SIR case for centric reflections	330
	Appendix 14.B The SIR case: the one-step procedure	331
	Appendix 14.C About methods for estimating the scattering	
	power of the heavy-atom substructure	333

275

15	Ano	malous dispersion techniques	335
	15.1	Introduction	335
	15.2	Violation of the Friedel law as basis of the phasing method	337
	15.3	Selection of dispersive atoms and wavelengths	340
	15.4	Phasing via SAD techniques: the algebraic approach	344
	15.5	The SIRAS algebraic bases	347
	15.6	The MAD algebraic bases	352
	15.7	The probabilistic approach for the SAD-MAD case	354
	15.8	The probabilistic approach for the SIRAS-MIRAS case	360
	15.9	Anomalous dispersion and powder crystallography	363
	15.10	Applications	364
	Apper	ndix 15.A A probabilistic formula for the SAD case	365
	Apper	ndix 15.B Structure refinement for MAD data	366
	Apper	ndix 15.C About protein phase estimation in the SIRAS case	368

Appendices

370

Appendix M.A Some basic results in probability theory	370
M.A.1 Probability distribution functions	370
M.A.2 Moments of a distribution	371
M.A.3 The characteristic function	371
M.A.4 Cumulants of a distribution	373
M.A.5 The normal or Gaussian distribution	374
M.A.6 The central limit theorem	375
M.A.7 Multivariate distributions	375
M.A.8 Evaluation of the moments in structure factor distributions	377
M.A.9 Joint probability distributions of the signs of the	
structure factors	379
M.A.10 Some measures of location and dispersion in the	
statistics of directional data	380
Appendix M.B Moments of the P(Z) distributions	382
Appendix M.C The gamma function	382
Appendix M.D The Hermite and Laguerre polynomials	383
Appendix M.E Some results in the theory of Bessel functions	385
M.E.1 Bessel functions	385
M.E.2 Generalized hypergeometric functions	389
$\label{eq:Appendix M.F} Some \ definite \ integrals \ and \ formulas \ of \ frequent \ application$	390

References	394
Index	412