Aquatic Chemistry Concepts Second Edition

James F. Pankow

CRC Press is an imprint of the Taylor & Francis Group, an informa business

Foreword	xxi
Preface to the First Edition	xxiii
Author	xxv

PART I Introduction

Chapter 1	Over	view		3
	1.1	Genera	I Importance of Aquatic Chemistry	3
	1.2	Import	ant Types of Chemical Reactions in Natural Waters	3
	1.3	Concer	tration Scales	5
		1.3.1	General	5
		1.3.2	Molarity	5
		1.3.3	Molality	5
		1.3.4	Formality	6
		1.3.5	Mole Fraction	7
		1.3.6	Weight Fractions: ppm, ppb, and ppt	10
	1.4	Activit	y and Activity Coefficients	15
		1.4.1	Basic Principles	15
		1.4.2	γ_i (Molal Scale Activity Coefficient in Water) Depends on	10
			What <i>i</i> Is, and on the Nature of the Solution	18
	1.5	Equilit	rium vs. Kinetic Modeling	20
,		1.5.1	General	20
		1.5.2	Kinetic Approaches	20
		1.5.3	1 for a constant in the second s	23
			1.5.3.1 General at Constant T and P (the Emphasis Hara) us	
			1.5.5.2 Systems at Constant T and F (the Emphasis field) V_5 .	23
			1 5 3 3 Equilibrium Constants – General	25
			1.5.3.4 Concentration Scales and Equilibrium Constants	25
	Refe	rences	1.5.5.4 Concentration Seales and Equinorium Constants	25
	Refe	rences		
Chapter 2	Ther	modynai	nic Principles	27
	2.1	Free E	nergy and Chemical Change	27
		2.1.1	Systems at Constant Temperature (T) and Pressure (P)	27
		2.1.2	Systems at Constant Temperature (T) and Volume (V)	28
	2.2	A Pote	ntial Energy Analog for Chemical Energy-Driven	
		Chemi	cal Change	29
	2.3	Chemi	cal Potential and Its Relationship to Free Energy G	30
	2.4	Proper	ties and Applications of the Chemical Potential	32
		2.4.1	General	32
		2.4.2	Changes in Free Energy	32
		2.4.3	The Role and Nature of μ_i°	35
		2.4.4	Standard Free Energies of Formation (ΔG_f°) for Neutral Species.	37

	2.4.5	Standard	I Free Energies of Formation ($\Delta G_{\rm f}^{\rm o}$) Values for Ionic	40
		Species.		40
	2.4.6	Concent	ration Scales and Standard States	41
	2.4.7	The Star	ndard State and the Activity Coefficient Reference	
		Convent	ion	42
		2.4.7.1	General	42
		2.4.7.2	Why Choose a Hypothetical Standard State for μ_i° on	
			the Molality Scale?	42
		2.4.7.3	Meaning of the Hypothetical $\gamma_i = 1.0$, $m_i = 1.0$ Standard	
			State	42
2.5	Effects	s of T and	P on Equilibrium Constants	43
2.6	Combi	ining Equi	librium Expressions (to Get New Ones)	46
2.7	Infinite	e Dilution.	Constant Concentration, and "Mixed" Equilibrium	
2.7	Consta	nts	, · · · · · · · · · · · · · · ·	47
	271	Infinite]	Dilution Constants	47
	2.7.2	Constan	t Ionic Medium Constants	48
	2.7.3	Mixed C	Constants	49
2.8	Activit	ty Coeffici	ent Equations	50
210	2.8.1	Activity	Coefficient Equations for Single Ions	50
	282	Activity	Coefficient Equations for Neutral Species	53
Refe	rences			54
Refer		••••••	••••	

PART II Acid/Base Chemistry

Chapter 3	The Proton (H ⁺) in Aquatic Chemistry				
	3.1General Importance of H+ in Natural Waters573.2Should We Refer to the Proton in Water as H+ or H_3O^+ ?603.2.1Definitions603.2.2The Meaning for Both [H+] and [H_3O+]: Protons in Water Exist as a Set of Species H+, H_3O^+ , $H_5O_2^+$,				
Chapter 4	The Electroneutrality Equation, Mass Balance Equations, and the Proton Balance Equation				
	4.1Introduction634.2The Electroneutrality Equation (ENE)634.3Mass Balance Equations (MBEs)654.4The Proton Balance Equation (PBE)67				
Chapter 5	Quantitative Acid/Base Calculations for Any Solution of Acids and Bases73				
	5.1Introduction735.2Solution of the Generic Acid HA, All $\gamma_i = 1$ 735.2.1Introduction735.2.2Solving for the Speciation for a Solution of HA – All $\gamma_i = 1$, Otherwise No Simplifying Assumptions755.2.3The [H ⁺] Polynomial Version in the HA Solution Problem79				

		5.2.4	Simplify for a Sol 5.2.4.1	ring Using the Acidic Solution Approximation (ASA) ution of HA ASA Alone	80 80
			5.2.4.2	Plus Weak Acid Approximation (WAA) for a	07
			5.2.4.3	ASA+SAA: Acidic Solution Approximation	02
				Solution of $H\Delta$	83
	53	Solutio	n of the C	Solution of TIA	05
	0.5	531	Introduc	tion	85
		532	Solving	for the Speciation for a Solution of NaA – All $x = 1$	
		01012	Otherwi	se No Simplifying Assumptions	86
		5.3.3	Simplify	ying Using the Basic Solution Approximation (BSA) for	
		01010	a Solutio	n of NaA	89
			5.3.3.1	BSA Alone	89
			5.3.3.2	BSA+WBA: Basic Solution Approximation	
			0101012	Plus Weak Base Approximation (WBA) for a	
				Solution of NaA	91
			5.3.3.3	BSA+SBA: Basic Solution Approximation	
				Plus Strong Base Approximation (SBA) for a	
				Solution of NaA	92
	5.4	Solutio	ns of H ₂ B	, NaHB, and Na ₂ B, All $\gamma_i = 1$	92
		5.4.1	Introduc	tion – α Values for the Species Related to	
			a Diprot	ic Acid	92
		5.4.2	Solution	of H ₂ B of Concentration C (F)	93
		5.4.3	Solution	of NaHB of Concentration $C(F)$	95
		5.4.4	Solution	of Na ₂ B of Concentration C (F)	95
		5.4.5	A Soluti	on of H_2B , or NaHB, or Na ₂ B of Concentration C (F)	95
	5.5	Solutio	ons of Am	monia and Ammonium Salts	96
		5.5.1	The Mo	noprotic Acid Form (NH_{4}^{+}) Is Ionic, the Conjugate Base	
			Form (N	(H_2) Carries No Charge	96
		5.5.2	Solution	of NH ₂ Cl of Concentration $C(F)$	96
		5.5.3	Solution	of NH_2 of Concentration $C(F)$	97
	5.6	Setting	Up the El	NE to Solve for the Speciation of Any Acid/Base Problem	98
		5.6.1	Foundat	ional Principles	98
		5.6.2	A Set of	α Values for Each Acid/Base Family	98
	5.7	Genera	al Approa	ch for Solving for the Speciation Including Activity	
		Correc	tions		99
		5.7.1	Using ° <i>F</i>	Values When Making Activity Corrections	99
		5.7.2	Activity	Corrections When the Final Ionic Strength I Is Known	
			A Priori		. 100
		5.7.3	Activity	Corrections When A Priori the Final Ionic Strength I Is	
			Not Kno	own	. 101
	Refer	ence		······	. 103
Chapter 6	Depe	ndence o	of α Value	s on pH, and the Role of Net Strong Base	. 105
	61	Introdu	iction		.105
	6.2	Loga	and Log [vs. pH Plots for Monoprotic Acid Systems	.105
	J. <i></i>	6.2.1	$Log \alpha v$	s. pH Plots	. 105
		0.2.1	205 u V.		

		6.2.2	$pH \ll pK_a$	106
		6.2.3	$pH \gg pK_{a}$	107
		6.2.4	Log [] vs. pH Plots	108
	6.3	Log[]	vs. pH Plots and the Range of Chemistries of Solutions in a	
		Monop	rotic Acid System	109
		6.3.1	Solution of HA – "The HA Equivalence Point"	109
		6.3.2	Solution of NaA – "The NaA Equivalence Point"	111
		6.3.3	Solutions Other than Simply "Solution of HA" or "Solution of	
		01010	NaA"	112
		6.3.4	$C_{\rm p} - C_{\rm A}$: The Units of Net Strong Base Are Equivalents of	
		0.011	Charge per Liter	113
	Refe	rences		116
	Iteres	ences m		
Chanter 7	Titra	tions of A	Acids and Bases	117
Chapter /	- 4			117
	7.1	Introdu	iction	11/
	7.2	Titratic	ons in a Monoprotic Acid System	118
		7.2.1	General Considerations and Two Instructional Limiting Cases	120
		7.2.2	f and $g - 1$ he Math and the Meanings	120
		7.2.3	Litrations with a Range of pK_a values, and inflection	102
	7 0	.	Points (IPS)	123
	7.3	Using t	he ist Derivative to Find Intration Curve Equivalence Points (EFS).	120
	7.4	Gran I	Itration Functions	130
		7.4.1	General Considerations	150
		1.4.2	The "Outer" Gran Functions in an HA System: Quantifying	
			Strong Acid and Weak Acid Levels with $F_{f<0}^{HA}$ and $F_{f>1}^{HA}$	131
			7.4.2.1 Background	131
			7.4.2.2 $F_{f<0}^{HA}$	131
			7.4.2.3 $F_{t>1}^{\text{HA}}$	132
		7.4.3	The Inner Gran Functions $(0 < f < 1)$ in an HA System: $F_{f < 1}^{HA}$	
			and $F_{60}^{\rm HA}$	135
			7 A 2 1 E ^{HA}	125
			7.4.3.1 $\Gamma_{f<1}$	155
			7.4.3.2 $F_{f>0}^{\text{int}}$	136
		7.4.4	Determining Alkalinity (Alk) in the CO ₂ System: $F_{f<0}^{CO_3^{-1}}$	137
	Refe	rences		140
Chapter 8	Buffe	er Intensi	ity β	143
	8.1	Introdu	action	143
	8.2	β in M	onoprotic Acid Systems	145
	8.3	Equation	on for β in a Monoprotic Acid System	147
	8.4	β as a I	Function of K_a , A_T , and pH	150
		8.4.1	General	150
		8.4.2	Comparing the $2.303\alpha_0\alpha_1A_T$ Curve to the Lines for $2.303[H^+]$	
			and 2.303[OH-]	151
	8.5	β in Sy	stems Containing More than One Acid/Base Pair, or	
		a Polyp	protic Acid	153

٠

	8.6	Effects	s of Dilution on pH in Buffer Solutions	156
		8.6.1	General	156
		8.6.2	Specifics	156
Chapter 9	Cher	nistry of	Dissolved CO ₂	159
-	0.1	Tu du a lu		150
	9.1	Introdu	JCIION	139
	9.2		Describing the Thration Position of a CO_2 System	161
		9.2.1		101
		9.2.2	Alk and H ⁺ -Acy: The $f = 0$ (H ₂ CO ₃) Equivalence Point	166
		9.2.3	The Base-Side Analogs of H ⁺ -Acy and Alk: OH ⁻ -Alk and Acy	
			and the $f = 2$ (Na ₂ CO ₃) Equivalence Point	172
		9.2.4	AIk = ANC, Acy = BNC	173
	9.3	Consei	rvation of Alkalinity	173
		9.3.1	General	173
		9.3.2	Conservation of Alk during Addition or Removal of CO ₂	173
		9.3.3	Conservation of Alk during Changes in T or P	174
		9.3.4	Conservation of Total Equivalents of Net Strong Base during	
			Mixing of Solutions	174
		9.3.5	Lack of Conservation of Alk during Precipitation or Dissolution	
	. .	_	of Carbonate Minerals	175
	9.4	Log C	oncentration Diagrams in Closed (Fixed C_T) CO ₂ Systems	175
		9.4.1	General	175
		9.4.2	Log Concentration vs. pH Diagrams for Systems with	
			Fixed C _T	175
		9.4.3	The $f = 0$, 1, and 2 Equivalence Points (EPs) in a Log	
			Concentration vs. pH Diagram with Fixed C_T	177
		9.4.4	Buffer Intensity for Closed (Fixed C_T) CO ₂ Systems	178
	9.5	Open (CO_2 Systems with Fixed p_{CO_2}	179
		9.5.1	General	179
		9.5.2	Log Concentration vs. pH Diagrams for Open Systems with	100
			Fixed p_{CO_2}	182
		9.5.3	Alkalinity Expressed as a Function of C_T and pH, and as a	
			Function of p_{CO_2} and pH	184
		9.5.4	The Universal Acidification Plot (UAP)	190
		9.5.5	Buffer Intensity in Open CO ₂ Systems with Fixed p_{CO_2}	193
	9.6	Open (CO_2 Systems with p_{CO_2} a Variable	195
	9.7	In-Situ	<i>u p</i> _{CO2}	196
	Refe	rences		198

PART III Metal/Ligand Chemistry

Chapter 10	Comp	plexation of Metal Ions by Ligands	203
	10.1	Introduction	203
	10.2	Formation Constants vs. Dissociation Constants (Stability Constants vs.	
		Instability Constants)	205
	10.3	Hydrolysis of Metal Ions	207
		10.3.1 Metal Ions Act as Acids	207

10.3.2 Polynuclear Hydroxo Complexes at High Total Metal	
Concentrations	
10.4 Complexes with Cl ⁻ in Brines and Seawater	
10.5 Chelates	
Pafarances	
Keletenees	

PART IV Mineral Solubility

Chapter 11	Simpl	e Salts and Metal Oxides/Hydroxides/Oxyhydroxides	219
	11.1 11.2	Introduction Defining Where a Solution Is Relative to Exact Saturation	219 220
		11.2.1 Undersaturation, Saturation, and Supersaturation in	220
		Terms of K_{s0}	220
		Dissolve to Reach Equilibrium? vs. The Solution POV: The	
		Solution Has a Specific Chemistry; Will Precipitation Occur,	
		and If Yes, How Much?	221
	11.3	Simple Salts Involve Only "Spectator Ions"	221
	11.4	Metal Hydroxides, Oxides, and Oxyhydroxides	226
		11.4.1 The 1st (K_{s0}) Part of the Story – If the Dissolution	
		Were Simple	226
		11.4.2 The Rest of the Story – Complexation by OH ⁻ : K_{s1} , K_{s2} , etc.	
		(or K_{s1} , K_{s2} , etc.) and the Not-Simple Solubility of Metal	220
		11.4.2 Total Salubility of a Particular Metal Hydrovide Ovide or	229
		11.4.5 Total Solubility of a Faithculai Metal Hydroxide, Oxide, of	232
		11.4.4 Solubility Differences among the Different Fe(III) Metal	252
		Hydroxides, Oxyhydroxides, and Oxides	238
		11.4.5 Metal Hydroxide, Oxide, or Oxyhydroxide Equilibrated with	
		Water and Some Value of $(C'_{\rm B} - C'_{\rm A})$	239
		11.4.5.1 Initially Pure Water: $(C'_B - C'_A) = 0, C_T = 0$	239
		11.4.5.2 Non-Zero Net Simple Strong Base (i.e., of the Types	
		NaOH and HCl): $(C'_B - C'_A) \neq 0$ with $C_T \neq 0$	240
	Refer	ences	242
Chapter 12	Solub	ility Behavior of Calcium Carbonate and Other Divalent Metal	
	Carbo	onates in Closed and Open Systems	245
	12.1	Introduction	245
	12.2	Alkalinity (All Cases)	247
	12.3	Case I: Closed System, $C_T = Ca_T$ (Calcium Carbonate +	
		Water + Variable $(C_B' - C_A')$	247
		12.3.1 Solubility as a Function of pH	247
		12.3.2 The Particular pH When $(C'_B - C'_A) = 0$	249
		12.3.3 pH When $(C'_B - C'_A) \neq 0$	251
	12.4	Case II: Closed System, $C_T = Ca_T + y$ (Calcium Carbonate +	
		Water + Initial y Dissolved CO ₂ Variable $(C_B' - C_A')$)	252
		12.4.1 The Particular pH when $(C_B - C_A) \neq 0$	252
		12.4.2 The Effect of Added $CO_2(y)$ on Dissolution of Calcite When $(C' - C') = 0$	0.50
		$(\mathbf{U}_{\mathbf{B}} - \mathbf{U}_{\mathbf{A}}) = \mathbf{U}$	253

	12.5	Case III	: Open System, Constant p_{CO_2} : Calcium Carbonate + Water +	
		Variable	$C(C'_{\rm B} - C'_{\rm A})$	254
		12.5.1	Solubility as a Function of pH	254
		12.5.2	The Particular pH When $(C'_{\rm B} - C'_{\rm A}) = 0$	255
		12.5.3	pH as Affected by $(C'_B - C'_A) \neq 0$, as in Acid Rain	258
	Refer	ences		260
Chapter 13	Metal	Phospha	tes	261
	13.1	General		261
	13.2	Hydroxy	$V_{anatite} - Ca_{\epsilon}(PO_{\lambda})_{2}(OH)_{\alpha}$	261
	13.3	Fluoroa	patite $-Ca_{5}(PO_{4})_{2}F_{(5)}$	269
	13.4	Struvite	$- MgNH_4PO_4 \cdot 6H_2O_{(2)}$	274
	Refer	ences		278
Chapter 14	Whic	h Solid Is	Solubility Limiting? Examples with Fe(II) for FeCO _{3(s)} vs.	
	Fe(OI	H) _{2(s)} Usin	g Log p _{CO2} vs. pH Predominance Diagrams	281
	14 1	Introduc	tion	281
	14.1	Equilibr	ium Coevistence of Two Solids	287
	14.2	Log noo	$x_{\rm r}$ vs. pH Predominance Diagrams with Regions for $F_{\rm e}CO_{\rm eff}$	
	14.5	$E_{0}(OH)$	and Dissolved $F_{\alpha}(II)$ Species	282
		1431	$F_{(0)} = 10^{-5} M$	282
		14.5.1	14311 FeCO $//Fe(OH)$ Boundary Line	282
			14.3.1.2 E ₂ 2+/E ₂ (OH) and E ₂ (OH) /E ₂ (OH) ⁻	
			$\begin{array}{c} \text{Reundary Lines} \\ \text{Reundary Lines} \end{array}$	283
			14.2.1.2 Eo2+/EoCO and EoCO (Eo(OU)- Doundary Lines	205
			14.3.1.5 Fe ^{-/} /FeCO _{3(s)} and FeCO _{3(s)} /Fe(OH) ₃ Boundary Lines.	205
			14.5.1.4 Old-School Approximations for Drawing Boundary	286
		1420	Dependence of the Diagram on Eq(II)	200
		14.5.2	Log n us nH Predominance Diagram for $Fe(II) = 10^{-7} M$	292
		14.5.5	Log p_{CO_2} vs. pH Predominance Diagram for $Fe(H)_{T,sys} = 10^{-9} M$	202
	Dafar	14.5.4	$\log p_{CO_2}$ vs. pri Predominance Diagram for $Fe(\Pi)_{T,sys} = 10^{-5} M \dots$	292
	Refer	ence		295
Chapter 15	The F	Kelvin Eff	fect: The Effect of Particle Size on Dissolution and	207
	Еларо	Dration E	Juiidi 1a	291
	15.1	Introduc	ction	297
	15.2	The Inte	erfacial Tension σ	298
		15.2.1	The Origin of Interfacial Tension	298
		15.2.2	The Effects of Surfactants on Interfacial Tension	300
	15.3	The Inte	erfacial Tension and the Pressure Increase across a Curved	
		Interfac	e	301
	15.4	Effect o	f $\Delta P(r)$ on Chemical Potential and Equilibrium	302
		15.4.1	General	302
		15.4.2	Equilibrium across a Flat Interface	303
		15.4.3	Equilibrium across a Spherical Interface of Radius r	305
		15.4.4	Cubic Particles of Dimension 2r	306
	Refer	ences		308

Chapter 16	Solid	Solid and	d Liquid/Liquid Solution Mixtures	309
	16.1	Introdu	ction	309
	16.2	Thermo	dynamic Equations Governing the Formation of Solid and	
		Liquid S	Solutions	309
		16.2.1	General Equations	309
		16.2.2	Ideal Solutions	312
		16.2.3	Non-Ideal Solutions	313
		16.2.4	Chemical A When Present in a Solution vs. When Pure	315
	16.3	Phase S	eparation in Non-Ideal Solutions	316
		16.3.1	The $\Delta \overline{G}_{mxg}$ Curve and Phase Separation	316
		16.3.2	Tendency for Correlation between x_A^{α} and x_B^{β}	317
	Appe	ndix 16.A	۰	319
	••	16.A.1	Minimization of the Free Energy G by Phase Separation	319
		16.A.2	The Linear Mixing Curve for $\Delta \overline{G}_{mxg}$ vs. x_A in the Region Where	
			Phase Separation Occurs	321
		16.A.3	When Phase Separation Occurs, the Same Two Values of x_A^{α}	
			and $\chi_{\rm A}^{\beta}$ Are Obtained Regardless of the Values of $n_{\rm A}$ and $n_{\rm B}$	321
	Refer	ences		323

PART V Redox Chemistry

Chapter 17	Redox	x Reactions, $E_{\rm H}$, and pe	327
	17.1	Introduction	327
	17.2	Assigning Oxidation States	327
	17.3	$E_{\rm H}$ and pe: Equivalent Ways of Handling Redox Calculations	
		(But Using pe Has Advantages)	335
		17.3.1 $E_{\rm H}$ Equations	335
		17.3.2 pe Equations	
		17.3.2.1 The Concept of pe	344
		17.3.2.2 pe and the Redox K as Developed from the Nernst	
		Equation	346
		17.3.2.3 pe Is as Meaningful as $E_{\rm H}$	
		17.3.2.4 At Equilibrium, All Redox Half Reactions Specify	
		the Same pe (and $E_{\rm H}$)	349
		17.3.2.5 Reference Electrodes, the $E_{\rm H}$ (pe) Combination	
		Electrode, and the pH Combination Electrode	349
	17.4	Redox Ladder	353
		17.4.1 Redox Ladder under Standard Conditions (Use pe ^o or $E_{\rm H}^{\rm o}$)	353
		17.4.2 Redox Ladder under Non-Standard Conditions	353
	17.5	Redox α Values	355
		17.5.1 General	355
		17.5.2 $\alpha_{\Omega_2}^{\text{remaining}}$ - A Fraction-Remaining α for O ₂ (For Comparison	
		with Actual Redox α Values)	355
		17.5.3 $\alpha_{N(V)}$, the Redox α for N(V) When All N Is Dissolved and	
		Considering Only N(V) (as NO_{2}) and N(0) (as N_{2}).	356
		17.5.4 $\alpha_{\text{Fe(III)}}$, the Redox α for Fe(III) When All Fe Is Dissolved	357

		17.5.5	$\alpha_{S(VI)}$, the Redox α for S(VI) When All S Is Dissolved and	
			Considering Only S(VI) (as HSO_4^- and SO_4^{2-}) and S(-II) (as	
			H ₂ S and HS ⁻)	358
		17.5.6	$\alpha_{C(IV)}$ the Redox α for C(IV) When All C Is Dissolved and	
			Considering Only C(IV) (the CO ₂ species) and C($-IV$) (as CH ₄).	359
	17.6	Oxidati	on and Reduction of Water	360
		17.6.1	Reduction of Water	360
		17.6.2	Oxidation of Water	361
		17.6.3	Redox Stability Limits for Water: The Redox Analog of	
			Thermal Boiling	361
		17.6.4	pe Range for Most Natural Waters at 1 atm	363
		17.6.5	The pe (E_{μ}) of Pure Water with No Added Oxidants of	
			Reductants – The Redox Analog of pH = $\frac{1}{2} \log K_w$ for Pure	
			Water (Optional)	363
	Refer	ences		364
Chanter 18	Intro	luction t	one pH Diagrams: The Cases of Aqueous Chlorine Hydrogen	
Chapter 10	and C	Nuction to	b pe-ph Diagrams. The Cases of Aqueous Chlornie, Hydrogen,	365
	anu C	xygen		
	18.1	Introdu	ction	365
	18.2	pe-pH	Diagram for Aqueous Chlorine	366
		18.2.1	Preliminary pe-pH Diagram for Aqueous Chlorine	366
		18.2.2	Actual pe-pH Diagram for Aqueous Chlorine for	
			Some Specific Cl _T	366
		18.2.3	Aqueous Cl ₂ : Disproportionation and Disinfection	373
	18.3	pe-pH	Diagram for Aqueous Oxygen	374
		18.3.1	Preliminary pe-pH Diagram for Aqueous Oxygen	374
		18.3.2	Why H_2O_2 Does Not Have a Predominance Region for	
			Aqueous Oxygen (Optional)	375
		18.3.3	Actual pe-pH Diagram for Aqueous Oxygen	377
	18.4	pe-pH	Diagram for Aqueous Hydrogen	377
	18.5	The Mu	utual Exclusion of O ₂ and H ₂	378
	Refer	ences		379
Chanter 10	ne_n	H Diagra	ams for Lead (Ph) with Negligible Dissolved CO	381
Chapter 17	pc-pi	II Diagic	$\lim_{n \to \infty} O = Leau (10) \text{ with regrigible Dissolved CO}_2 \dots$	501
	19.1	Introdu	lction	381
	19.2	pe-pH	DIAGRAM FOR $Pb_{T,sys} = 10^{-2} M$	381
		19.2.1	General – Pb Has Three Important Oxidation States IV, II,	
			and 0	381
		19.2.2	The Two Vertical Solution $ \alpha$ -PbO _(s) Solution Boundary Lines	
			and the Vertical Solution/Solution Boundary Line for Pb(II)	383
		19.2.3	The Curved PbO _{2(s)} /Solution Boundary Line	385
		19.2.4	The Straight PbO _{2(s)} /α-PbO _(s) Boundary Line	387
		19.2.5	The Curved Solution/Pb _(s) Boundary Line	388
		19.2.6	The Straight α -PbO _(s) /Pb _(s) Boundary Line	388
		19.2.7	Implications of the Low C_{T} pe-pH Predominance	
			Diagrams for Tap Water by Oxidative (Corrosive) Dissolution	
			of Pb(0) in Lead Pipes, Lead-Containing Solder, and	
			Lead-Containing Brass	389
			-	

	19.3	pe-pH	I Diagram for $Pb_{T,sys} = 10^{-3} M$	392
	19.4	pe-pH	I Diagram for $Pb_{T,sys} = 10^{-7} M (21 \text{ ppb})$	393
	19.5	Use of	"Simplifying" Assumptions to Draw pe-pH (E _H -pH) Diagrams	395
	Refer	ences		395
Chapter 20	pe-pl	H Diagr	ams for Lead (Pb) in the Presence of CO_2 with Fixed C_T , and	
	Fixed	IC_{T} and	Phosphate	397
	20.1	Introd	uction	307
	20.1	ne nu	$[Diagram for Ph = 10^{-5} M \text{ and } C = 10^{-3} M$	207
	20.2	20.21	General $C_{T,sys} = 10^{-1} M$ and $C_{T,free} = 10^{-1} M$	397
		20.2.1	Solution of ^{Pb(II)} Values with Hudrovide and Corbonate Delated	
		20.2.2	Complexes	300
		20.2.3	Identification of the Ph(II) Solids That I imit Ph(II) Solubility	400
		20.2.3	The Two Vertical Solution/Pb(II) Solid Boundary Lines and	+00
		20.2.1	the Vertical Solution/Solution Boundary Lines for Pb(II)	404
		20.2.5	C(IV) Converted to C(-IV) (<i>i.e.</i> CH.) under Very Reducing	
		20.2.0	Conditions	405
		20.2.6	The Curved PhO Solution Boundary Line	405
		20.2.7	The Curved Solution/Pb., Boundary Line	405
		20.2.8	The Curved PhO _{$(0/Ph/(CO_{*}))$ (OH), and Ph/(CO_{*})(OH) /}	
			Ph., Solid/Solid Boundary Lines	406
	20.3	pe-pH	Diagram for Ph_ $_{\rm T}$ = 10 ⁻⁷ M and C _T = 10 ⁻³ M	400
		20.3.1	General	409
		2032	Solution $\alpha^{Pb(II)}$ Values with Hydroxide and Carbonata Palatad	
		20.5.2	Complexes	400
		2033	Identification of the Ph(II) Solids That Limit Ph(II) Solubility	409
		20.3.4	The Vertical Solution/Solution Boundary Lines for Db(II)	409
		20.3.5	C(IV) Converted to C(-IV) (i.e. CH.) under Very Reducing	409
			Conditions	100
		20.3.6	The Curved PbO ₂₆ /Solution Boundary Line	4 09 //10
		2037	The Curved $PbO^{2-}/Pb(II)$ Boundary Line	410
		20.3.7	The Curved Solution/Ph Boundary Line	410
	20.4	ne_nH	Diagram for Ph $-10^{-7} M$ with $C = -10^{-3} M$ and	410
		$P_{m} =$	$10^{-5} M$ (~1 mg/L as Orthophosphate)	A11
		-1, ree 20.4.1	General	411
		20 4 2	Solution or Pb(II) Values with II when it a Contract D 1 (1	411
		20.4.2	and Phosphate Related Complexes	410
		2043	Identification of the Ph(II) Solide That Limit Dh(II) Solide The	412
		20.4.5	The Two Vertical Solution/Pb(II) Solid Boundary Lines and the	. 413
		20.1.1	Vertical Solution/Solution Boundary Lines for Dk/U)	41.4
		20.4.5	C(IV) Converted to C(-IV) (i.e. CH) under Very Poducing	. 414
			Conditions	415
		20.4.6	The Curved PbO ₂₀ /Solution Boundary Line	413
		2047	The Curved $PhO^{2-}/Pb/(II)$ Boundary Line	. 413
		2048	The Curved Solution/Ph. Boundary Line	. 415
		2049	The Curved Solid/Solid DbO /Db (DO) OIL and	. 415
		₩V• T•2	Ph.(PO.), $OH_{1/2}$ Ph. Boundary Lines	410
	Refere	nces	$\sim c_{3}(1 \circ c_{4/3} \circ 1 c_{(s)})$ boundary Lines	. 410
				.41/

Chapter 21	pe and Natural Systems4				
	21.1	Redox-Controlling Elements in Natural Waters	419		
		21.1.1 Major vs. Minor Redox Elements	419		
		21.1.2 Full Redox Equilibrium Rarely Obtained in Natural Waters	419		
		21.1.3 pe° and pe°(W)	421		
	21.2	pe-pH Diagram for Nitrogen			
		21.2.1 Redox Equilibria Governing Nitrogen Species			
		21.2.2 Identification of the pe-pH Predominance Regions for			
		Aqueous Nitrogen			
	21.3	pe-pH Diagrams for Iron with Fe _r = $10^{-5} M$. C _r ≈ 0			
		21.3.1 General – Fe Has Three Important Oxidation States:			
		III, II, and 0			
		21.3.2 Fe(III) _T /Fe(II) _T Boundary Line	430		
		21.3.3 Solution/(am)Fe(OH) _{3(c)} Boundary Line	431		
		21.3.4 Solution/Fe(OH) _{2(c)} Boundary Line	432		
		21.3.5 Solution/Fe _(c) Boundary Line	433		
		21.3.6 (am)Fe(OH) $_{3(c)}$ /Fe(OH) $_{2(c)}$ Boundary Line	433		
		21.3.7 $Fe(OH)_{2(s)}/Fe_{(s)}$ Boundary Line			
		21.3.8 Final pe-pH Diagram Comments	434		
	21.4	pe-pH Diagrams for Iron with $Fe_T = 10^{-5} M$, $C_{T free} = 10^{-3} M$	436		
		21.4.1 General – Fe Oxidation States Are III, II, and 0; FeCO _{3(c)}			
		Needs to Be Considered	436		
		21.4.2 Solubility Limitation by FeCO _{3(s)} vs. Fe(OH) _{2(s)}	436		
		21.4.3 (am)Fe(OH) _{3(s)} /FeCO _{3(s)} Boundary Line	438		
		21.4.4 FeCO _{3(s} /Fe _(s) Boundary Line	438		
		21.4.5 Solution/FeCO _{3(s)} Boundary Line	439		
		21.4.6 Final pe-pH Diagram Comments	439		
	21.5	pe-pH Diagram for Sulfur with $S_T = 10^{-3} M$	440		
		21.5.1 Redox Equilibria Governing Sulfur Species	440		
		21.5.2 Identification of the pe-pH Predominance Regions for			
		Aqueous Sulfur	441		
		21.5.3 Final pe-pH Diagram Comments	447		
	21.6	pe-pH Diagram for Carbon	450		
		21.6.1 Redox Equilibria Governing Carbon Species	450		
		21.6.2 Identification of the pe-pH Predominance Regions for			
		Aqueous Carbon	450		
		21.6.3 Final pe-pH Diagram Comments	452		
		21.6.4 Disproportionation of Aqueous Organic Carbon Compounds	453		
	Refer	ences	457		
Chapter 22	Redo	x Succession (Titration) in a Stratified Lake during a Period of Summer			
-	Stagn	ation	459		
	00.1	Total Lotter	450		
	22.1		459		
		22.1.1 Lake Dynamics			
	00.0	22.1.2 The Effects of Lake Dynamics on pe	461		
	22.2	Model Considerations for a Hypothetical Lake			
		22.2.1 Initial Conditions			
		22.2.2 Assumptions Governing Nitrogen Redox Chemistry			

	22.2.3	Equivalents	per Liter (eq/l) as Units for Redox Reactions	463
	22.2.4	pe for Befor	e any Reactions Occur (Period 0)	464
22.3	The Fo	ur Sequential	Redox Equivalence Points and Additional Redox	464
	22 3 1	The Sequent	tial Equivalence Point (EP) Landmarks for O_2 ,	
	<i>44.J.</i> 1	Nitrate Iron	(III) and Sulfate	464
	2232	I andmark T	Times Delineating the Different Periods	466
	22.3.2	22 3 2 1 Ge	eneral	466
		22.3.2.2 Pe	riod 0: Consumption of Initial OC	466
		22.3.2.3 Pe	riod 1: Reduction of O_2 up to Activation of NO_3^{-1}	466
		22.3.2.4 Pe	riod 2: Reduction of NO_3^- up to Disappearance of	
		(ar	n)Fe(OH) _{3(s)} At Fe(II) EP	466
		22.3.2.5 Pe	riod 3: Reduction of SO_4^{2-} up to	
		Ap	ppearance of FeS _(s)	466
		22.3.2.6 Re	duction of SO_4^{2-} and Disproportionation of	
		C_6	H ₁₂ O ₆ with FeS _(s) Present–Period 4	468
22.4	A Redo	x Titration M	lodel for Water in the Hypolimnion	468
	22.4.1	The Redox 7	Fitration Equation (RTE)	468
		22.4.1.1 Ge	eneral	468
		22.4.1.2 Th	e Terms in the RTE	468
		22.4.1.3 RT	TE: A Function of pe and pH	469
	22.4.2	The Electron	neutrality Equation (ENE)	472
	22.4.3	Results		473
22.5	Kinetic	s and Labile	vs. Non-Labile Organic Carbon	475
Refer	ences		». 	484

PART VI Effects of Electrical Charges on Solution Chemistry

Chapter 23	The Debye–Hückel Equation and Its Descendent Expressions for Activity			
	Coen	icients of Aqueous ions		
	23.1	Introduction		
	23.2	The Debye–Hückel Law		
		23.2.1 The Poisson Equation and the Local Charge Density		
		23.2.2 $\psi_{ion}(r)$ and $\psi_{cloud}(r)$		
		23.2.3 The Linearized Poisson-Boltzmann Equation	491	
		23.2.4 Integrating the Linearized Poisson-Boltzmann Equation	493	
		23.2.5 Determining $\psi_{cloud}(r)$		
		23.2.6 Use of $\psi_{cloud}(r)$ Near the Core Ion to Derive the		
		Debye–Hückel Law		
	23.3	Derivation of the Extended Debye-Hückel Law		
	23.4	Summary Comments on the Four Activity Coefficient Equations		
	Refer	ences	503	
Chapter 24	Electi	rical Double Layers in Aqueous Systems	505	
	24.1	Introduction	505	
	24.2	The Origins of Charge at Solid/Water Interfaces	505	
		24.2.1 Surface Charge Resulting from the Effects of a Potential-		
		Determining Ion (pdi)	505	

		24.2.1.1 A Constituent Ion of the Solid Is the pdi	505
		24.2.1.2 H ⁺ and OH ⁻ as Potential-Determining Ions	507
		24.2.2 Particles with Fixed Surface Charge – Clays	507
	24.3	Similarities between Double-Layers and Ion/(Ion Cloud) Systems	509
	24.4	The Electrochemical Potential	509
		24.4.1 The Electrochemical Potential and Equilibrium in the	
		Presence of an Electrical Field	509
		24.4.2 The Vertical Distribution of Gases in the Atmosphere and Its	
		Relation to the Distant-Dependent Concentration of Aqueous	
		Ions in a Double Layer	511
	24.5	Double-Layer Properties as a Function of the Activity of a Potential-	
		Determining Ion	512
		24.5.1 ψ° as a Function of the Activity of	
		a Positive Potential-Determining Ion	512
		24.5.2 ψ^{a} as a Function of the Activity of	
		a Negative Potential-Determining Ion	515
		24.5.3 Characteristics That Determine the Zero Point of Charge (zpc)	
		Activity of a Potential-Determining Ion	516
	24.6	Concentrations as a Function of Distance in the Aqueous Charge Layer	516
		24.6.1 σ_+ and σ	516
		24.6.2 The Boltzmann Distribution in the Aqueous Charge Layer	517
		24.6.3 Reference Value for $\psi(\infty)$	518
	04.7	24.6.4 σ_+ and σ for AB _(S) in Equilibrium with Initially Pure Water	518
	24.7	The Differential Equation Governing the Aqueous Charge Layer	519
	24.8	Real Aqueous Solutions Contain Multiple Cations and Multiple Anions	521
	24.9	Integrating the Differential Equation Governing the Aqueous Charge	500
		Layer so as to Obtain $\psi(x)$	522
		24.9.1 $z \psi^{\circ} $ Is Small (<i>i.e.</i> , Sufficiently Close to Zero)	522
		24.9.2 $z \psi^{\circ} $ Is Not Necessarily Small	523
	24.10	$\psi(x)$ for All ψ°	527
	24.11	σ_s and σ_d	527
	24.12	The Physical Significance of κ^{-1}	528
	24.13	Effects of κ^{-1} on the Properties of the Aqueous Charge Layer	529
	24.14	Strategies for Using the Various Double-Layer	
		Equations in Solving Problems	530
	Refer	ences	531
Chapter 25	Colloi	id Stability and Particle Double Layers	533
	25.1	Introduction	533
	25.2	Coagulation	533
		25.2.1 General	533
		25.2.2 van der Waals Forces	534
		25.2.3 Coagulation Mechanisms	535
	25.3	Electrostatic Repulsion vs. van der Waals Attraction	536
		25.3.1 DLVO Theory	536
		25.3.2 The Schulze–Hardy Rule	539
	Refer	ences	540
Index			5/1
шисх	•••••		