Chemical Theory beyond the Born-Oppenheimer Paradigm

Nonadiabatic Electronic and Nuclear Dynamics in Chemical Reactions

Kazuo Takatsuka • Takehiro Yonehara Kota Hanasaki • Yasuki Arasaki

The University of Tokyo, Japan

NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI

Contents

Pre	eface			xiii
Aci	knowle	edgment	8	xvii
1.	The Aim of This Book: Where Are We?			
	1.1	Potent	tial energy surfaces and nonadiabatic transitions	1
		1.1.1	Electronic state theory	1
		1.1.2	Nonadiabatic transitions—A brief overview	2
	1.2	Necess	sity of nonadiabatic dynamical electron theory	3
		1.2.1	Progress in laser chemistry	3
		1.2.2	Chemistry without potential energy surfaces:	
			Highly quasi-degenerate electronic states	5
		1.2.3	General theory of mixed quantum and classical	
			dynamics	6
	1.3	Structure of this book		
2.	Basic Framework of Theoretical Chemistry			
	2.1	Born-	Huang expansion	9
	2.2			11
		2.2.1	Bound states and notion of potential energy	
			surface	12
		2.2.2	Stationary-state scattering theory for electrons	
			by molecules	14
	2.3	Validit	y of the BO approximation	17
	2.4	Genera	alization of the adiabatic electronic states	19

	Nuclear Dynamics on Adiabatic Electronic Potential Energy Surfaces			
3.1	0.	cal nuclear dynamics: Ab initio molecular		
0.1	dynan			
	3.1.1	Coupling of electronic and nuclear motion in		
		tautomerization dynamics		
	3.1.2	Molecular machine?		
3.2	Nuclea	ar quantum dynamics on an adiabatic potential		
	surface	surface		
	3.2.1	Time-propagation with split operator formalism .		
	3.2.2	An example of three dimensional dynamics		
	3.2.3	Polynomial expansion method		
	3.2.4	Multiconfigurational time-dependent Hartree		
		(MCTDH) approach		
	3.2.5	Eigenfunctions extracted from wavepacket		
		dynamics: Energy screening		
3.3	ng the dynamics with time-resolved photoelectron			
	spectro	oscopy		
	3.3.1	Hamiltonian describing interaction with an		
		external field		
	3.3.2	Coupled dynamics in electronic excitation		
	3.3.3	Nuclear wavepacket description of femtosecond		
		time-resolved photoelectron spectroscopy		
	3.3.4	Geometry-dependent photoionization matrix		
		elements		
	3.3.5	Calculation of the photoelectron orbitals		
	3.3.6	Numerical time-propagation describing		
		photoionization		
	3.3.7	Efficient diagonalization of the interaction matrix		
	3.3.8	The external fields introduced		
	3.3.9	Photoelectron spectra from the dynamics and their		
	0.0.10	transient counterparts		
	3.3.10	History of dynamics in the transient photoelectron		
	0.0.11	spectrum		
	3.3.11	Velocity map imaging and its time derivative		
	3.3.12	An example: The Na_2 double minimum state		

4.	Breakdown of the Born–Oppenheimer Approximation:					
			eories of Nonadiabatic Transitions and Ideas behind	59		
	4.1	Theor	ies for one-dimensional curve crossing problem	59		
		4.1.1	The Landau–Zener theory of curve crossing model	60		
		4.1.2	Quantum phase arising from nonadiabatic			
			transitions	63		
		4.1.3	Zhu–Nakamura theory	68		
	4.2	Mixed quantum–classical formulation of				
		electron-nucleus coupled nonadiabatic dynamics				
		4.2.1	Pechukas path integrals	70		
		4.2.2	Mean-field path representation: Semiclassical			
			Ehrenfest theory	74		
		4.2.3	Quantum variables mapped to classical ones:			
			Meyer–Miller method	77		
		4.2.4	Initial value representation of semiclassical			
			estimate of nonadiabatic transition amplitudes	80		
	4.3	Surfac	e hopping scheme and beyond	82		
		4.3.1	Surface hopping model	82		
		4.3.2	Surface hopping driven by several types of state			
			couplings	83		
		4.3.3	Tully's fewest switch surface hopping method			
			and its variants	85		
		4.3.4	Spawning method of Martínez	87		
		4.3.5	Remixing of electronic states to incorporate			
			the quantum nature of nuclear dynamics and			
			interference among the paths	88		
	4.4	Coher	ence and decoherence before and after nonadiabatic			
		$interaction \ldots \ldots$				
		4.4.1	Decay of mixing with coherence switching	89		
		4.4.2	Notion of decoherence in quantum subsystems by			
			contact with classical subsystems and decoherence			
			time	91		
	4.5 Some specific methods recently proposed for nonadiaba					
		dynamics				
	4.6	Hybrid	d methods for nonadiabatic dynamics in large			
		molecu	ular systems	93		

vii

5.	Direct Observation of the Wavepacket Bifurcation due to					
	Nonadiabatic Transitions					
	5.1	How d	loes the Born–Oppenheimer approximation break			
		down?	?	97		
	5.2	Nuclear wavepacket bifurcation as observed with				
		time-resolved photoelectron spectroscopy				
		5.2.1	Coupled nuclear dynamics on diabatic potential			
			energy surfaces	99		
		5.2.2	Wavepacket bifurcation in the NaI system	103		
		5.2.3	Photoelectron signals arising from the NaI			
			dynamics	106		
	5.3	Contro	ol of nonadiabatic chemical dynamics	117		
		5.3.1	Various time domains of external field control \ldots	117		
		5.3.2	An example: Fluctuating potential curves	118		
		5.3.3	Shift of conical intersection and replacement			
			by avoided crossing	125		
	5.4	Conica	al intersection and wavepacket dynamics there	128		
		5.4.1	The NO_2 system	128		
		5.4.2	Time-resolved photoelectron spectroscopy of the			
			conical intersection dynamics in the NO_2 system .	143		
		5.4.3	Monitoring the effect of a control pulse			
			on a conical intersection by time-resolved			
			photoelectron spectroscopy	153		
	5.5	High-l	narmonic spectroscopy to monitor nonadiabatic			
		transit	tion	164		
		5.5.1	High-harmonic generation and associated phases .	164		
		5.5.2	Transient grating and interferometry	165		
		5.5.3	Transient grating interferometry of the conical			
			intersection dynamics in NO_2	166		
	5.6	Electron and nucleus dynamics tracked with pulse train				
		in tim	e-resolved photoelectron spectroscopy	167		
		5.6.1	Generation of pulse train	169		
		5.6.2	A case study on LiH molecule	169		
		5.6.3	Pulse train induced dynamics	171		
		5.6.4	Transient photoelectron spectrum	175		
		5.6.5	Roles of individual components	177		
	5.7	Photo	emission arising from electron transfer within			
		a mole	ecule	179		

viii

Contents

6.	Nonadiabatic Electron Wavepacket Dynamics in Path-branching Representation			
			gation	187
			6.1.1	Theoretical background: A representation of the
			total wavefunctions	187
		6.1.2	Nonadiabatic electron wavepackets along	
			branching paths	189
		6.1.3	Dynamics in the electron-nuclear	
			quantum-classical mixed representation $\ldots \ldots$	190
		6.1.4	The semiclassical Ehrenfest theory as a special	
			case	193
	6.2	Metho	ds of averaging and branching	193
		6.2.1	Electronic state mixing along branching paths	193
		6.2.2	The electronic wavepackets on the branching	
			paths \ldots	198
		6.2.3	Branching conditions	199
		6.2.4	Energy-conserving path-branching with the	
			force averaging	200
		6.2.5	What is the decoherence in nonadiabatic	
			transitions after all?	205
	6.3	Nume	rical examples of branching paths and transition	
		probal		206
		6.3.1	Systems of two and three electronic states	
			nonadiabatically coupled	206
		6.3.2	Practices in the semiclassical Ehrenfest theory and	
			the full quantum dynamics of nuclear wavepacket	0.07
			dynamics	207
		6.3.3	Nonadiabatic transition probability	209
		6.3.4	Force diabatization	210
		6.3.5	Geometry of branching paths	212
		6.3.6	An example in which the semiclassical Ehrenfest	
			fails	215
	6.4		degenerate coupled electronic states	218
		6.4.1	System functions and computational details	219
		6.4.2	Dynamics in five state model	221
		6.4.3	Nonadiabatic dynamics in fifteen state model	222

6.5	Electr	onic phase interference between different branching				
	paths:	Dynamics around conical intersections	224			
6.6	Quantum effects manifesting in the nuclear branching					
			232			
	6.6.1	Interactions and initial conditions	232			
	6.6.2	Practices of the dynamic calculations	233			
	6.6.3	Surmounting a potential barrier by lower				
		energy paths; a behavior looking like quantum				
		$tunneling \ldots \ldots$	234			
	6.6.4	Trapping above the potential barrier: Time-delay				
		in reaction dynamics	235			
	6.6.5	Full-quantum dynamics to verify the branching				
		phenomena	237			
6.7	Quant	ization of non-Born–Oppenheimer paths	240			
	6.7.1	Action Decomposed Function (ADF)	240			
	6.7.2	Normalized Variable Gaussians (NVG) as a simple				
		approximation	243			
	6.7.3	Illustrative application to a two-state model \ldots	247			
6.8	Appen	dix A: Reduction of muti-dimensional PSANB to				
	one-di	mensional (1D) approximation	257			
6.9	Appendix B: Quantum chemical calculations of the matrix					
	elemer	ts of nonadiabatic interactions	258			
	6.9.1	On diabatic representation	260			
	6.9.2	Evaluation of the nuclear derivative coupling				
		matrix elements with canonical molecular				
		orbitals	263			
	6.9.3	Nuclear derivative coupling elements in CSF				
		representation	264			
	6.9.4	Practical calculation of X_{IJ}^k	267			
	6.9.5	Nonadiabatic coupling without use of a nuclear				
		derivative	268			
6.10	Appendix C: Tracking the continuity of molecular					
		s along a nuclear path	269			
	6.10.1	Concept of unique-continuity of molecular	070			
	6 10 0	orbitals	270			
	6.10.2	Practical implementation of unique-continuity of molecular orbitals	070			
		or molecular orbitals	272			

 \mathbf{x}

7.	Dyna	mical E	lectron Theory for Chemical Reactions	275
	7.1		on flux in chemical reactions	276
		7.1.1	Definitions	276
		7.1.2	An example: Collision of Na and Cl	280
	7.2		ime dynamics of electron migration in a model water	-00
	1.2		anion system	282
		7.2.1	Nonadiabatic dynamics of hydrated electron	283
		7.2.2	Mechanisms of migration of the hydrated electron	285
		7.2.3	Complex-valued natural orbitals in electron	
			wavepacket dynamics	286
		7.2.4	Nuclear motion inducing nonadiabatic transitions	288
		7.2.5	Isotope effects	290
	7.3	Single	and relayed proton transfer in peptide	291
		7.3.1	Quantities characterizing the electron dynamics .	293
		7.3.2	Computational details	296
		7.3.3	Proton transfer in the ground state	298
		7.3.4	Reversal electron current against the proton	
			motion	301
		7.3.5	Rearrangement of π -bonds: Dynamical	
			manifestation of the Pauling resonance structures	301
		7.3.6	Stabilization of the zwitter ionic resonance	
			structure by the mediating water	303
	7.4	Double	e proton transfer in formic acid dimer	306
		7.4.1	Electronic configurations and initial conditions	307
		7.4.2	Electron dynamics in dimerization process	311
		7.4.3	Net electron flow across a geometric	
			cross-section	314
		7.4.4	Electron dynamics in double proton transfer	316
		7.4.5	Summary of the mechanism	320
	7.5		d-state proton-electron simultaneous transfer	322
		7.5.1	Electronic configurations and initial conditions	324
		7.5.2	Mechanism of transitions	325
		7.5.3	Quantities related to electron density	329
		7.5.4	Electron dynamics	331
		7.5.5	The successive nonadiabatic transitions	333
		7.5.6	Analysis of electron dynamics	334
		7.5.7	Summary	337

Chemical Theory Beyond the Born-Oppenheimer Paradigm				
7.6				
	energy	y surfaces loses sense	338	
Molecular Electron Dynamics in Laser Fields			343	
8.1	Exper	imental progress and theoretical issues	344	
	8.1.1	Attosecond laser tracking of molecular electronic		
		states	344	
	8.1.2		345	
	8.1.3	•		
		•	348	
8.2			o (0	
	•	•	349	
			349	
	8.2.2		054	
	~		354	
8.3		0.04		
			364	
	8.3.1	· · ·	0.04	
			364	
	8.3.2		0.05	
0.4	A 1.	•	365	
8.4			368	
			368 373	
			373	
05			393	
0.0		-	395 395	
			396	
		•	399	
	0.0.0		399	
ogue			401	
iograp	hy		403	
Index 42				
	Molec 8.1 8.2 8.3 8.4 8.5 <i>logue</i> <i>lograp</i>	 7.6 Chem energy Molecular E. 8.1 Exper 8.1.1 8.1.2 8.1.3 8.2 Dresse dynan 8.2.1 8.3 Gener arbitra 8.3.1 8.3 Gener arbitra 8.3.1 8.4 Applic 8.4.1 8.4.2 8.4 Applic 8.4.3 8.5 Dynan 8.5.1 8.5.2 8.5.3 	 7.6 Chemical dynamics for systems where notion of potential energy surfaces loses sense	