Fred Bunz

Principles of Cancer Genetics

Second Edition

Contents

1	The Genetic Basis of Cancer	1
	The Cancer Gene Theory	1
	Cancers Are Invasive Tumors	2
	Cancer Is a Unique Type of Genetic Disease	3
	What Are Cancer Genes and How Are They Acquired?	4
	Mutations Alter the Human Genome	5
	Genes and Mutations	7
	Single Nucleotide Substitutions	13
	Gene Silencing Is Marked by Cytosine Methylation: Epigenetics	16
	Environmental Mutagens, Mutations and Cancer	17
	Inflammation Promotes the Propagation of Cancer Genes	22
	Stem Cells, Darwinian Selection and the Clonal	
	Evolution of Cancers	25
	Selective Pressure and Adaptation: Hypoxia	
	and Altered Metabolism	28
	Multiple Somatic Mutations Punctuate Clonal Evolution	30
	Tumor Growth Leads to Cellular Heterogeneity	31
	Tumors Are Distinguished by Their Spectrum of Driver	
	Gene Mutations and Passenger Gene Mutations	33
	Colorectal Cancer: A Model for Understanding the Process	
	of Tumorigenesis	33
	Do Cancer Cells Divide More Rapidly Than Normal Cells?	37
	Germline Cancer Genes Allow Neoplasia to Bypass Steps	
	in Clonal Evolution	38
	Cancer Syndromes Reveal Rate-Limiting Steps	
	in Tumorigenesis	40
	The Etiologic Triad: Heredity, the Environment,	
	and Stem Cell Division	43
	Understanding Cancer Genetics	45
	Further Reading	46

2	Oncogenes
	What Is An Oncogene?
	The Discovery of Transmissible Cancer Genes
	Viral Oncogenes Are Derived from the Host Genome
	The Search for Activated Oncogenes: The RAS Gene Family
	Complex Genomic Rearrangements: The MYC Gene Family
	Proto-oncogene Activation by Gene Amplification
	Proto-oncogenes Can Be Activated by Chromosomal Translocation
	Chromosomal Translocations in Liquid Tumors
	Chronic Myeloid Leukemia and the Philadelphia Chromosome
	Oncogenic Activation of Transcription Factors
	in Prostate Cancer and Ewing's Sarcoma
	Oncogene Discovery in the Genomic Era: Mutations in PIK3CA
	Selection of Tumor-Associated Mutations
	Multiple Modes of Proto-oncogene Activation
	Oncogenes Are Dominant Cancer Genes
	Germline Mutations in RET and MET Confer Cancer Predisposition
	Proto-oncogene Activation and Tumorigenesis
	Further Reading
2	Tumor Suppressor Genes
3	What Is a Tumor Suppressor Gene?
	The Discovery of Recessive Cancer Phenotypes
	Patinoblastoma and Knudson's Two-Hit Hypothesis
	Chromosomal Localization of the Retinoblastoma Gene
	The Mapping and Cloping of the Retinoblastoma Gene
	Tumor Suppressor Gene Inactivation: The Second 'Hit' and Loss
	of Heterozygosity
	Recessive Genes Dominant Traits
	APC Inactivation in Inherited and Sporadic Colorectal Cancers
	TP53 Inactivation: A Frequent Event in Tumorigenesis
	Functional Inactivation of p53: Tumor Suppressor
	Genes and Oncogenes Interact
	Mutant TP53 in the Germline: Li-Fraumeni Syndrome
	Gains-of-Function Caused by
	Cancer-Associated Mutations in TP53

Relative Risk and the Odds Ratio

Breast Cancer Susceptibility: BRCA1 and BRCA2

Genetic Losses on Chromosome 9: CDKN2A

SMAD4 and the Maintenance of Stromal Architecture.....

and Overlapping Genes 111 Genetic Losses on Chromosome 10: PTEN.....

Cancer Predisposition: Allelic Penetrance,

Complexity at CDKN2A: Neighboring

	Two Distinct Genes Cause Neurofibromatosis	119
	From Flies to Humans, Patched Proteins Regulate	
	Developmental Morphogenesis	121
	von Hippel-Lindau Disease	122
	NOTCH1: Tumor Suppressor Gene or Oncogene?	122
	Multiple Endocrine Neoplasia Type 1	123
	Most Tumor Suppressor Genes Are Tissue-Specific	124
	Modeling Cancer Syndromes in Mice	126
	Genetic Variation and Germline Cancer Genes	128
	Tumor Suppressor Gene Inactivation During	
	Colorectal Tumorigenesis	130
	Inherited Tumor Suppressor Gene Mutations:	
	Gatekeepers and Landscapers	132
	Maintaining the Genome: Caretakers	133
	Further Reading	133
		125
4	Genetic Instability and Cancer	135
	What Is Genetic Instability?	135
	The Majority of Cancer Cells Are Aneuploid.	136
	Aneuploid Cancer Cells Exhibit Chromosome Instability	138
	Chromosome Instability Arises Early in Colorectal Tumorigenesis	140
	Chromosomal Instability Accelerates Clonal Evolution	141
	Aneuploidy Can Result from Mutations	
	That Directly Impact Mitosis	143
	STAG2 and the Cohesion of Sister Chromatids	144
	Other Genetic and Epigenetic Causes of Aneuploidy	146
	Transition from Tetraploidy to Aneuploidy	1.40
	During Tumorigenesis	148
	Multiple Forms of Genetic Instability in Cancer	149
	Defects in Mismatch Repair Cause Hereditary	
	Nonpolyposis Colorectal Cancer	151
	Mismatch Repair-Deficient Cancers Have	
	a Distinct Spectrum of Mutations	157
	Defects in Nucleotide Excision Repair	
	Cause Xeroderma Pigmentosum	158
	NER Syndromes: Clinical Heterogeneity and Pleiotropy	163
	DNA Repair Defects and Mutagens Define	
	Two Steps Towards Genetic Instability	166
	Defects in DNA Crosslink Repair Cause Fanconi Anemia	167
	A Defect in DNA Double Strand Break	
	Responses Causes Ataxia-Telangiectasia	172
	A Unique Form of Genetic Instability	
	Underlies Bloom Syndrome	175
	Aging and Cancer: Insights from the Progeroid Syndromes	179
	Instability at the End: Telomeres and Telomerase	182

	Overview: Genes and Genetic Stability	184
	Further Reading	185
_		187
5	Cancer Genomes	187
	Discovering the Genetic Basis of Cancer. From Genes to Genetics minutes	188
	What Types of Genetic Alterations Are Found in Fundor Constructions	188
	How Many Genes Are Mutated in the Various Types of Cancer	100
	What is the Significance of the Mutations	191
	That Are Found in Cancers?	103
	When Do Cancer-Associated Mutations Occur?	104
	How Many Different Cancer Genes Are There?	1)4
	How Many Cancer Genes Are Required	105
	for the Development of Cancer?	195
	Cancer Genetics Shapes Our Understanding of Metastasis	195
	Tumors Are Genetically Heterogenous	197
	Beyond the Exome: The 'Dark Matter' of the Cancer Genome	199
	A Summary: The Genome of a Cancer Cell	200
	Further Reading	200
6	Cancer Gene Pathways	203
U	What Are Cancer Gene Pathways?	203
	Cellular Pathways Are Defined by Protein-Protein Interactions	205
	Individual Biochemical Reactions, Multisten	
	Pathways and Networks	207
	Protein Phosphorylation Is a Common Regulatory Mechanism	210
	Signals from the Cell Surface. Protein Tyrosine Kinases	212
	Membrane Associated GTPases: The RAS Pathway	217
	An Intracellular Kinase Cascade: The MAPK Pathway	219
	Genetic Alterations of the RAS Pathway in Cancer	219
	Membrane Associated Linid Phosphorylation	
	The DI2K/AKT Dathway	221
	Control of Cell Growth and Energetics: The mTOR Pathway	224
	Constitution of Central And Energences. The intervention of the analysis	
	and mTOP Bathways Define Roles in Cell Survival	225
	The STAT Dethway Transmits Cytokine	
	Signals to the Call Nucleus	227
	Morphogenesis and Cancer: The WNT/APC Pathway	229
	Dusregulation of the WNT/APC Pathway in Cancers	231
	Noteb Signaling Mediates Cell to Cell Communication	233
	Mornhogenesis and Cancer: The Hedgehog Pathway	234
	TCE R/SMAD Signaling Maintains Adult Tissue Homeostasis	236
	MVC Is a Downstream Effector of Multiple	<i>L</i> JU
	MIC is a Downsucan Enclor of Multiple	220
	cancer Oene Falliways	239
	poor Activation is miggered by Damaged or	242
	Incompletely Replicated Unromosomes	242

	p53 Is Controlled by Protein Kinases Encoded	
	by Tumor Suppressor Genes	244
	p53 Induces the Transcription of Genes	
	That Suppress Cancer Phenotypes	247
	Feedback Loops Dynamically Control p53 Abundance	250
	The DNA Damage Signaling Network Activates	
	Interconnected Repair Pathways	252
	Inactivation of the Pathways to Apoptosis in Cancer	254
	RB1 and the Regulation of the Cell Cycle	257
	Several Cancer Gene Pathways Converge on Cell Cycle Regulators	261
	Many Cancer Cells Are Cell Cycle Checkpoint-Deficient	263
	Chromatin Modification Is Recurrently	
	Altered in Many Types of Cancer	264
	Summary Putting Together the Puzzle	266
	Further Reading	268
	Tuttier Reading	
7	Genetic Alternations in Common Cancers	271
	Cancer Genes Cause Diverse Diseases	271
	Cancer Incidence and Prevalence	272
	Lung Cancer	274
	Prostate Cancer	276
	Breast Cancer	278
	Colorectal Cancer	280
	Endometrial Cancer	282
	Melanoma of the Skin	283
	Bladder Cancer	285
	Lymphoma	286
	Cancers in the Kidney	288
	Thyroid Cancer	289
	Leukemia	290
	Cancer in the Pancreas	292
	Ovarian Cancer	294
	Cancers of the Oral Cavity and Pharynx	295
	Liver Cancer	297
	Cancer of the Uterine Cervix	298
	Stomach Cancer	299
	Brain Tumors	300
	Further Reading	302
		205
8	Cancer Genetics in the Clinic	205
	The Uses of Genetic Information	305
	Elements of Cancer Risk: Carcinogens and Genes	207
	Identifying Carriers of Germline Cancer Genes	210
	Cancer Genes as Biomarkers of Early Stage Malignancies	510
	Cancer Genes as Biomarkers for Diagnosis,	212
	Prognosis and Recurrence	513

Conventional Anticancer Therapies Inhibit Cell Growth	316
Exploiting the Loss of DNA Repair Pathways:	
Synthetic Lethality	317
On the Horizon: Achieving Synthetic Lethality	
in TP53-Mutant Cancers	319
Molecularly Targeted Therapy: BCR-ABL and Imatinib	320
Clonal Evolution of Therapeutic Resistance	324
Targeting EGFR Mutations	325
Antibody-Mediated Inhibition of Receptor Tyrosine Kinases	327
Inhibiting Hedgehog Signaling	328
A Pipeline from Genetically-Defined Targets to Targeted Therapies	330
Neoantigens Are Recognized by the Immune System	332
The Future of Oncology	334
Futher Reading	335
Index	337