Tamás Turányi • Alison S. Tomlin

Analysis of Kinetic Reaction Mechanisms

Contents

٠

1			•••••••••••••••••••••••••••••••••••••••	1 3
2	Reaction Kinetics Basics			5
	2.1	Stoichiometry and Reaction Rate		
		2.1.1	Reaction Stoichiometry	5
		2.1.2	Molecularity of an Elementary Reaction	9
		2.1.3	Mass Action Kinetics and Chemical Rate Equations	10
		2.1.4	Examples	14
	2.2	Param	eterising Rate Coefficients	18
		2.2.1	Temperature Dependence of Rate Coefficients	18
		2.2.2	Pressure Dependence of Rate Coefficients	20
		2.2.3	Reversible Reaction Steps	26
	2.3	Basic 3	Simplification Principles in Reaction Kinetics	28
		2.3.1	The Pool Chemical Approximation	28
		2.3.2	The Pre-equilibrium Approximation	29
		2.3.3	Rate-Determining Step	30
		2.3.4	The Quasi-Steady-State Approximation (QSSA)	30
		2.3.5	Conserved Properties	32
		2.3.6	Lumping of Reaction Steps	33
	Refe	rences.		34
3	Mechanism Construction and the Sources of Data			39
	3.1	Autom	natic Mechanism Generation	39
	3.2	Data S	ources	46
	Refe	rences.		48

4	Read	ction Pat	thway Analysis	53
	4.1	Specie	es Conversion Pathways	53
	4.2	Pathwa	ays Leading to the Consumption or Production	
		of a Sp	becies	56
	Refe	rences.		59
=	Como		nd Uncontainty Analysas	61
5		ensitivity and Uncertainty Analyses		61
	5.1 5.2		Sensitivity Analysis	63
	5.2	5.2.1	Basic Equations	63
		5.2.1	The Brute Force Method	66
			The Green Function Method	67
		5.2.3 5.2.4	The Decoupled Direct Method	68
		5.2.4 5.2.5	Automatic Differentiation	69
		5.2.5 5.2.6	Application to Oscillating Systems	70
	57		bal Component Analysis of the Sensitivity Matrix	70
	5.3		1 1	74
	5.4 5.5		Uncertainty Analysis	74 75
	3.3	5.5.1	Morris Screening Method	75 76
		5.5.1	Global Uncertainty Analysis Using Sampling-Based	/0
		5.5.4	Methods	79
		5.5.3		79 86
		5.5.5 5.5.4	Sensitivity Indices	00 88
		5.5.4 5.5.5	Fourier Amplitude Sensitivity Test	00 90
		5.5.5 5.5.6	Response Surface Methods	90
		5.5.0		100
	5.6	Uncort	Methods	100 101
	5.0	5.6.1	ainty Analysis of Gas Kinetic Models	101
		5.6.2	Uncertainty of the Rate Coefficients	102
		3.0.2	Characterisation of the Uncertainty of the Arrhenius	100
		563	Parameters	106
		5.6.3	Local Uncertainty Analysis of Reaction Kinetic	
		561	Models	111
		5.6.4	Examples of the Application of Uncertainty Analysis to	114
		5 <i>(</i> 5	Methane Flame Models	114
		5.6.5	Applications of Response Surface Techniques to	110
		500	Uncertainty Analysis in Gas Kinetic Models	119
		5.6.6	Handling Correlated Inputs Within Global Uncertainty	100
		• • •	and Sensitivity Studies	123 124
	5.7 Unan	· · · · · · · · · · · · · · · · · · ·		
			analysis: General Conclusions	128
	Keler	ences	•••••••••••••••••••••••••••••••••••••••	133
6	Time	scale Ar	1alysis	145
	6.1	Introduction		
	6.2	Species	s Lifetimes and Timescales	146

Contents

	6.3		tion of Perturbation Theory to Chemical Kinetic	
				152
	6.4		ational Singular Perturbation Theory	160
	6.5	Slow M	anifolds in the Space of Variables	163
	6.6	Timesca	ales in Reactive Flow Models	169
	6.7		s of Reaction Kinetic Models	171
	6.8		r Splitting and Stiffness	175
				177
7			Reaction Mechanisms	183
	7.1		ction	184
	7.2	Reaction Rate and Jacobian-Based Methods for Species		
		Remova	al	185
		7.2.1	Species Removal via the Inspection of Rates	185
		7.2.2	Species Elimination via Trial and Error	186
		7.2.3	Connectivity Method: Connections Between the Species	
			Defined by the Jacobian	187
		7.2.4	Simulation Error Minimization Connectivity	
			Method	188
	7.3	Identific	cation of Redundant Reaction Steps Using Rate-of-	
		Product	ion and Sensitivity Methods	189
	7.4	Identific	cation of Redundant Reaction Steps Based on Entropy	
		Product	ion	192
	7.5	Graph-I	Based Methods	193
		7.5.1	Directed Relation Graph Method	193
		7.5.2	DRG-Aided Sensitivity Analysis	197
		7.5.3	DRG with Error Propagation	198
		7.5.4	The Path Flux Analysis Method	200
		7.5.5	Comparison of Methods for Species Elimination	201
	7.6	Optimis	sation Approaches	202
		7.6.1	Integer Programming Methods	202
		7.6.2	Genetic Algorithm-Based Methods	206
		7.6.3	Optimisation of Reduced Models to Experimental	
			Data	208
		7.6.4	Application to Oscillatory Systems	209
	7.7	Species	Lumping	210
		7.7.1	Chemical Lumping	211
		7.7.2	Linear Lumping	217
		7.7.3	Linear Lumping in Systems with Timescale	
			Separation	222
		7.7.4	General Nonlinear Methods	224
		7.7.5	Approximate Nonlinear Lumping in Systems with	
			Timescale Separation	226

Contents

	7.7.6	Continuous Lumping	227
	7.7.7	The Application of Lumping to Biological and	
		Biochemical Systems	229
7.8	The Qu	uasi-Steady-State Approximation	231
	7.8.1	Basic Equations	232
	7.8.2	Historical Context	233
	7.8.3	The Analysis of Errors	234
	7.8.4	Further Recent Approaches to the Selection of	
		QSS-Species	238
	7.8.5	Application of the QSSA in Spatially Distributed	
		Systems	239
	7.8.6	Practical Applications of the QSSA	240
7.9	CSP-B	ased Mechanism Reduction	242
7.10	Numer	ical Reduced Models Derived from the Rate Equations of	
	the Det	tailed Model	244
	7.10.1	Slow Manifold Methods	245
	7.10.2	Intrinsic Low-Dimensional Manifolds	247
	7.10.3	Application of ILDM Methods in Reaction Diffusion	
		Systems	251
	7.10.4	Thermodynamic Approaches for the Calculation of	
		Manifolds	253
7.11	Numeri	ical Reduced Models Based on Geometric	
	Approa	ches	257
	7.11.1	Calculation of Slow Invariant Manifolds	257
	7.11.2	The Minimal Entropy Production Trajectory	
		Method	259
	7.11.3	Calculation of Temporal Concentration Changes Based	
		on the Self-Similarity of the Concentration Curves	259
7.12	Tabulat	tion Approaches	260
	7.12.1	The Use of Look-Up Tables	261
	7.12.2	In Situ Tabulation	263
	7.12.3	Controlling Errors and the Invariant Constrained	
		Equilibrium Pre-image Curve (ICE-PIC) Method	267
	7.12.4	Flamelet-Generated Manifolds	270
7.13	Numeri	cal Reduced Models Based on Fitting	271
	7.13.1	Calculation of Temporal Concentration Changes Using	
		Difference Equations	272
	7.13.2	Calculation of Concentration Changes by Assuming the	
		Presence of Slow Manifolds	274
	7.13.3	Fitting Polynomials Using Factorial Design	275
	7.13.4	Fitting Polynomials Using Taylor Expansions	276
	7.13.5	Orthonormal Polynomial Fitting Methods	276
	7.13.6	High-Dimensional Model Representations	281
		-	

		7.13.7 Artificial Neural Networks	282	
		7.13.8 Piecewise Reusable Maps (PRISM)	286	
	7.14	Adaptive Reduced Mechanisms	287	
	Refer	ences	291	
8	Similarity of Sensitivity Functions			
	8.1	Introduction and Basic Definitions	313	
	8.2	The Origins of Local Similarity and Scaling Relationships	316	
	8.3	The Origin of Global Similarity	322	
	8.4	Similarity of the Sensitivity Functions of Biological Models	325	
	8.5	The Importance of the Similarity of Sensitivity Functions	330	
	Refer	ences	335	
9	Computer Codes for the Study of Complex Reaction Systems			
	9.1	General Simulation Codes in Reaction Kinetics	337	
	9.2	Simulation of Gas Kinetics Systems	339	
	9.3	Analysis of Reaction Mechanisms	342	
	9.4	Investigation of Biological Reaction Kinetic Systems	344	
	9.5	Global Uncertainty Analysis	347	
	Refer	ences	349	
10	Sum	mary and Concluding Remarks	353	
Ind	ex		359	