Edited by Shannon S. Stahl and Paul L. Alsters

Liquid Phase Aerobic Oxidation Catalysis

Industrial Applications and Academic Perspectives

Contents

1

Preface XV List of Contributors XVII

Part I Radical Chain Aerobic Oxidation 1

Overview of Radical Chain Oxidation Chemistry 3

Ive Hermans 1.1 Introduction 3 1.2 Chain Initiation 6 1.3 Chain Propagation 7 1.4 Formation of Ring-Opened By-Products in the Case of Cyclohexane Oxidation 11 Complications in the Case of Olefin Autoxidation 12 1.5 1.6 Summary and Conclusions 13 References 14

2 Noncatalyzed Radical Chain Oxidation: Cumene Hydroperoxide 15

- Manfred Weber, Jan-Bernd Grosse Daldrup, and Markus Weber
- 2.1 Introduction 15
- 2.2 Chemistry and Catalysis 15
- 2.2.1 Cumene Route to Phenol and Acetone: Chemistry Overview 16
- 2.2.2 Thermal Decomposition of Cumene Hydroperoxide 17
- 2.2.3 Oxidation of Cumene 19
- 2.3 Process Technology 21
- 2.3.1 Process Overview 21
- 2.3.2 Reactors for the Cumene Oxidation 22
- 2.3.3 Reactor Modeling 23
- 2.3.4 Process Safety Aspects 26
- 2.4 New Developments 27
- 2.4.1 Process Intensification by Modification of the Oxidation Reaction 27
- 2.4.2 Improvements of Reactor and Process Design 29 References 30

VI Contents

3	Cyclohexane Oxidation: History of Transition from Catalyzed to Noncatalyzed 33 Johan Thomas Tinge
3.1	Introduction 33
3.2	Chemistry and Catalysis 34
3.3	Process Technology 35
3.3.1	The Traditional Catalyzed Cyclohexane Oxidation Process 35
3.3.2	The Noncatalyzed DSM Oxanone [®] Cyclohexane Oxidation
	Process 37
3.4	New Developments 38
	Epilogue 39
	References 39
4	Chemistry and Mechanism of Oxidation of para-Xylene to Terephthalic
	Acid Using Co-Mn-Br Catalyst 41
	Victor A. Adamian and William H. Gong
4.1	Introduction 41
4.2	Chemistry and Catalysis 42
4.2.1	Co-Br Catalysis 43
4.2.2	Cobalt-Manganese-Bromide Catalysis (MC Oxidation): The Nature
	of Synergy between Co and Mn 48
4.2.3	The Role and Nature of Bromine Species in MC Oxidation 50
4.2.4	Nature of Cobalt(III) and Mn(III) Species 52
4.2.5	Reactions of Cobalt(II) with Peroxy Radicals and the Effect of Solvent on Oxidation Rate 52
4.2.6	Phenomenon of Manganese Precipitation 54
4.2.7	Consolidated View of MC Oxidation Mechanism 54
4.2.8	Oxidation By-products 56
4.3	Process Technology 58
4.3.1	Oxidation 58
4.3.2	Purification 58
4.4	New Developments 61
4.4.1	Homogeneous Bromineless Catalysis 61
4.4.2	Heterogeneous Bromineless Oxidation Catalysis 62
4.4.3	Alternative Solvents 62
4.5	Conclusions 62
	References 63
	Part II Cu-Catalyzed Aerobic Oxidation 67
5	Cu-Catalyzed Aerobic Oxidation: Overview and New
	Developments 69
	Damian Hruszkewycz, Scott McCann, and Shannon Stahl
5.1	Introduction 69
5.2	Chemistry and Catalysis 70

Contents VII

- 5.2.1 Cu-Catalyzed Oxydecarboxylative Phenol Synthesis 70
- 5.2.2 Cu-Catalyzed Oxidative Carbonylation of Methanol for the Synthesis of Dimethyl Carbonate 72
- 5.3 Process Technology 74
- 5.3.1 Cu-Catalyzed Oxydecarboxylative Phenol Synthesis 74
- 5.3.2 Cu-Catalyzed Oxidative Carbonylation of Methanol for the Synthesis of Dimethyl Carbonate 75
- 5.4 New Developments: Pharmaceutical Applications of Cu-Catalyzed Aerobic Oxidation Reactions *76* References *82*

6 Copper-Catalyzed Aerobic Alcohol Oxidation 85

- Janelle E. Steves and Shannon S. Stahl
- 6.1 Introduction 85
- 6.2 Chemistry and Catalysis 86
- 6.3 Prospects for Scale-Up 91
- 6.4 Conclusions 93
 - References 94
- 7 Phenol Oxidations 97
- 7.1 Polyphenylene Oxides by Oxidative Polymerization of Phenols 97 Patrick Gamez
- 7.1.1 Introduction 97
- 7.1.2 Chemistry and Catalysis 99
- 7.1.3 Process Technology 102
- 7.1.4 New Developments 104
- 7.2 2,3,5-Trimethylhydroquinone as a Vitamin E Intermediate via Oxidation of Methyl-Substituted Phenols 106 Jan Schütz and Thomas Netscher References 109
 - Part III Pd-Catalyzed Aerobic Oxidation 113
- 8 Pd-Catalyzed Aerobic Oxidation Reactions: Industrial Applications and New Developments 115
 - Dian Wang, Jonathan N. Jaworski, and Shannon S. Stahl
- 8.1 Introduction 115
- 8.2 Chemistry and Catalysis: Industrial Applications *117*
- 8.2.1 Acetoxylation of Alkenes to Vinyl or Allyl Acetates 117
- 8.2.2 Oxidative Carbonylation of Alcohols to Carbonates, Oxalates, and Carbamates *118*
- 8.2.3 Oxidative Coupling of Arenes to Biaryl Compounds 121
- 8.3 Chemistry and Catalysis: Applications of Potential Industrial Interest *122*
- 8.3.1 Oxidation of Alcohols to Aldehydes *122*

VIII	Contents

1		
VIII	Contents	
	8.3.2	Oxidation of Arenes to Phenols and Phenyl Esters 123
	8.3.3	Benzylic Acetoxylation 125
	8.3.4	Arene Olefination (Oxidative Heck Reaction) 126
	8.4	Chemistry and Catalysis: New Developments and
		Opportunities 128
	8.4.1	Ligand-Modulated Aerobic Oxidation Catalysis 128
	8.4.2	Use of NO _x as Cocatalyst 130
	8.4.3	Methane Oxidation 132
	8.5	Conclusion 133
		References 133
	9	Acetaldehyde from Ethylene and Related Wacker-Type Reactions 139
		Reinhard Jira
	9.1	Introduction 139
	9.2	Chemistry and Catalysis 140
	9.2.1	Oxidation of Olefinic Compounds to Carbonyl Compounds 140
	9.2.2	Kinetics and Mechanism 140
	9.2.3	Catalytic Oxidation of Ethylene 145
	9.2.3.1	Oxidation of Ethylene to Acetaldehyde in the Presence of
		CuCl ₂ 145
	9.2.3.2	Oxidation of Ethylene to 2-Chloroethanol 147
	9.3	Process Technology (Wacker Process) 148
	9.3.1	Single-Stage Acetaldehyde Process from Ethylene 148
	9.3.2	Two-Stage Acetaldehyde Process from Ethylene 149
	9.4	Other Developments 151
		References 155
		Further Reading 158
	10	1,4-Butanediol from 1,3-Butadiene 159
		Yusuke Izawa and Toshiharu Yokoyama
	10.1	Introduction 159
	10.2	Chemistry and Catalysis 160
	10.2.1	Short Overview of Non-butadiene-Based Routes to
		1,4-Butanediol 160
	10.2.1.1	Acetylene-Based Reppe Process 160
	10.2.1.2	Butane-Based Process; Selective Oxidation of Butane to Maleic
		Anhydride 161
	10.2.1.3	Propylene-Based Process: Hydroformylation of Allyl Alcohol 161
	10.2.2	Butadiene-Based Routes to 1,4-Butanediol 162
	10.2.2.1	Oxyhalogenation of 1,3-Butadiene 162
	10.2.2.2	Oxidative Acetoxylation of 1,3-Butadiene 162
	10.3	Process Technology 164
	10.3.1	Mitsubishi Chemical's 1,4-Butanediol Manufacturing Process:
	10 2 1 1	First-Generation Process 165
	10.3.1.1	Oxidative Acetoxylation Step 165

Contents	IХ

- 10.3.1.2 Hydrogenation Step 165
- 10.3.1.3 Hydrolysis Step 166
- 10.3.2 Mitsubishi Chemical's 1,4-Butanediol Manufacturing Process: Second-Generation Process 167
- 10.4 New Developments 168
- 10.4.1 Improvement of the Current Process 168
- 10.4.2 Development of Alternative Processes 169
- 10.5 Summary and Conclusions 169 References 170
- 11Mitsubishi Chemicals Liquid Phase Palladium-Catalyzed Oxidation
Technology: Oxidation of Cyclohexene, Acrolein, and Methyl Acrylate
to Useful Industrial Chemicals 173

Yoshiyuki Tanaka, Jun P. Takahara, Tohru Setoyama, and Hans E. B. Lempers

- 11.1 Introduction 173
- 11.2 Chemistry and Catalysis 174
- 11.2.1Aerobic Palladium-Catalyzed Oxidation of Cyclohexene to
1,4-Dioxospiro-[4,5]-decane174
- 11.2.1.1 Optimization of the Reaction Conditions 174
- 11.2.2 Aerobic Palladium-Catalyzed Oxidation of Other Types of Olefins *176*
- 11.2.3 Aerobic Palladium-Catalyzed Oxidation of Acrolein to Malonaldehyde Bis-(1,3-dioxan-2-yl)-acetal Followed by Hydrolysis/Hydrogenation to 1,3-Propanediol *178*
- 11.3 Prospects for Scale-Up 180
- 11.3.1 Aerobic Palladium-Catalyzed Oxidation of Methyl Acrylate (MA) to 3,3-Dimethoxy Methyl Propionate: Process Optimization and Scale-Up 180
- 11.3.2 Small-Scale Reaction Optimization 181
- 11.3.3 Large-Scale Methyl Acrylate Oxidation Reaction and Work-Up 184
- 11.3.4 Reaction Simulation Studies as Aid for Further Scale-Up 184
- 11.4 Conclusion 187 References 187

12 Oxidative Carbonylation: Diphenyl Carbonate 189

Grigorii L. Soloveichik

- 12.1 Introduction 189
- 12.1.1 Diphenyl Carbonate in the Manufacturing of Polycarbonates 189
- 12.1.2 History of Direct Diphenyl Carbonate Process at GE 190
- 12.2 Chemistry and Catalysis 192
- 12.2.1 Mechanism of Oxidative Carbonylation of Phenol 192
- 12.2.2 Catalysts for Oxidative Carbonylation of Phenol 193
- 12.2.3 Cocatalysts for Oxidative Carbonylation of Phenol 196
- 12.2.3.1 Organic Cocatalysts 196
- 12.2.3.2 Inorganic Cocatalysts 196

X Contents

- 12.2.4 Multicomponent Catalytic Packages 199
- 12.2.5 Role of Bromide in Direct Synthesis of Diphenyl Carbonate 199
- 12.3 Prospects for Scale-Up 201
- 12.3.1 Catalyst Optimization 201
- 12.3.2 Water Removal in Direct Diphenyl Carbonate Process 202
- 12.3.3 Downstream Processing and Catalyst Recovery 203
- 12.4 Conclusions and Outlook 203 Acknowledgments 204 References 205
- 13 Aerobic Oxidative Esterification of Aldehydes with Alcohols: The Evolution from Pd-Pb Intermetallic Catalysts to Au-NiO_x Nanoparticle Catalysts for the Production of Methyl Methacrylate 209 Ken Suzuki and Setsuo Yamamatsu
- 13.1 Introduction 209
- 13.2 Chemistry and Catalysis 210
- 13.2.1 Discovery of the Pd–Pb Catalyst 210
- 13.2.2 Pd-Pb Intermetallic Compounds 210
- 13.2.3 Mechanism 212
- 13.2.4 The Role of Pb in the Pd–Pb Catalyst 213
- 13.2.5 Industrial Catalyst 213
- 13.3 Process Technology 214
- 13.4 New Developments 215
- 13.5 Conclusion and Outlook 217 References 218

Part IV Organocatalytic Aerobic Oxidation 219

- 14 Quinones in Hydrogen Peroxide Synthesis and Catalytic Aerobic Oxidation Reactions 221 Alison E. Wendlandt and Shannon S. Stahl
 14.1 Introduction 221
- 14.2Chemistry and Catalysis: Anthraquinone Oxidation (AO)Process223
- 14.2.1 Autoxidation Process (Hydroquinone to Quinone) 223
- 14.2.2 Hydrogenation Process (Quinone to Hydroquinone) 225
- 14.3 Process Technology 227
- 14.4Future Developments: Selective Aerobic Oxidation Reactions
Catalyzed by Quinones 229
- 14.4.1 Aerobic DDQ-Catalyzed Reactions Using NO_x Cocatalysts 229
- 14.4.2Aerobic Quinone-Catalyzed Reactions Using Other
Cocatalysts230
- 14.4.3 CAO Mimics and Selective Oxidation of Amines 231 References 234

Contents XI

- 15 NO_x Cocatalysts for Aerobic Oxidation Reactions: Application to Alcohol Oxidation 239 Susan L. Zultanski and Shannon S. Stahl 15.1
- Introduction 239
- 15.2 Chemistry and Catalysis 241
- Aerobic Alcohol Oxidation with NO, in the Absence of Other Redox 15.2.1 Cocatalysts 241
- Aerobic Alcohol Oxidation with NO, and Organic Nitroxyl 15.2.2 Cocatalysts 242
- 15.3 Prospects for Scale-Up 247
- 15.4 Conclusions 249 References 249
- N-Hydroxyphthalimide (NHPI)-Organocatalyzed Aerobic Oxidations: 16 Advantages, Limits, and Industrial Perspectives 253 Lucio Melone and Carlo Punta
- Introduction 253 16.1
- 16.2 Chemistry and Catalysis 254
- 16.2.1 Enthalpic Effect 256
- Polar Effect 256 16.2.2
- 16.2.3 Entropic Effect 257
- Process Technology 257 16.3
- 16.3.1 Oxidation of Adamantane to Adamantanols 257
- 16.3.2 Oxidation of Cyclohexane to Adipic Acid 258
- 16.3.3 Epoxidation of Olefins 259
- 16.3.4 Oxidation of Alkylaromatics to Corresponding Hydroperoxides 260
- 16.4 New Developments 262 Acknowledgments 264 References 264
- 17 Carbon Materials as Nonmetal Catalysts for Aerobic Oxidations: The Industrial Glyphosate Process and New Developments 267
- 17.1 Introduction 267
- Mark Kuil and Annemarie E. W. Beers
- 17.2Chemistry and Catalysis 268
- Mark Kuil and Annemarie E. W. Beers
- 17.3 Process Technology 270 Mark Kuil and Annemarie E. W. Beers
- 17.3.1Oxygen Pressure 271
- 17.3.2 Oxygen Flow 271
- 17.3.3 Activated Carbon Pore Size Distribution 271
- 17.3.4 Activated Carbon H₂O₂ Time 271
- Activated Carbon Nitrogen Content 272 17.3.5

XII Contents

17.4	New Developments 274
15 4 1	Paul L. Alsters
17.4.1	Aerobic Carbon Material Catalysis 275
17.4.1.1	Oxygenations and Oxidative Cleavage Reactions 275
17.4.1.2	Dehydrogenations and Dehydrogenative Coupling Reactions 279
17.4.2	Aerobic Graphitic Carbon Nitride Catalysis 280
17.4.2.1	Oxygenations and Oxidative Cleavage Reactions 280
17.4.2.2	Dehydrogenations and Dehydrogenative Coupling Reactions 281
17.5	Concluding Remarks 283 References 283
	Part V Biocatalytic Aerobic Oxidation 289
18	Enzyme Catalysis: Exploiting Biocatalysis and Aerobic Oxidations for High-Volume and High-Value Pharmaceutical Syntheses 291 Robert L. Osborne and Erika M. Milczek
18.1	Introduction 291
18.2	Chemistry and Catalysis 293
18.2.1	Directed Evolution of BVMOs for the Manufacturing of
	Esomeprazole 295
18.2.2	Directed Evolution and Incorporation of a Monoamine Oxidase for
	the Manufacturing of Boceprevir 298
18.3	Process Technology 302
18.4	New Developments 304
	References 306
	Part VI Oxidative Conversion of Renewable Feedstocks 311
19	From Terephthalic Acid to 2,5-Furandicarboxylic Acid: An Industrial Perspective 313
	Jan C. van der Waal, Etienne Mazoyer, Hendrikus J. Baars,
	and Gert-Jan M. Gruter
19.1	Introduction 313
19.1.1	The Avantium YXY Technology to Produce PEF, a Novel Renewable
	Polymer 314
19.2	Chemistry and Catalysis 314
19.2.1	Production of 2,5-Furandicarboxylic Acid Using Heterogeneous
	Catalysts 316
19.2.2	Production of 2,5-Furandicarboxylic Acid Using Homogeneous
	Catalysts 318
19.3	Process Technology 320
19.3.1	Process Economics and Engineering Challenges 320
19.3.1.1	Gas Composition Control 322
19.3.1.2	Temperature Control 323
19.3.1.3	Oxygen Mass Transfer Limitations 324

19.3.1.4	Overall Safety Operation 324
19.4	New Developments 325
19.4.1	Outlook for Co/Mn/Br in the Air Oxidation of Biomass-Derived
	Molecules 325
19.5	Conclusion 327
1710	List of Abbreviations 327
	References 327
	References 527
20	Azolaic Acid from Venetable Feedete duris Oridation Classics Classics
20	Azelaic Acid from Vegetable Feedstock via Oxidative Cleavage with Ozone or Oxygen 331
	Angela Köckritz
20.1	Introduction 331
20.1	
20.1.1	
20.1.1.1	Analytical Investigations of the Mechanism of Ozonolysis 336 Chemistry and Catalysia 226
20.2	Chemistry and Catalysis 336 Direct Apprhis Closures of the Devide Rev dof Oldin Addition (1997)
20.2.1	Direct Aerobic Cleavage of the Double Bond of Oleic Acid or Methyl Oleate 336
20.2.2	Aerobic Oxidation Step within a Two-Stage Conversion of Oleic Acid
	or Methyl Oleate 337
20.2.3	Aerobic Oxidation Step within a Three-Stage Conversion of Oleic
	Acid or Methyl Oleate 339
20.2.4	Biocatalysis 339
20.3	Prospects for Scale-Up 341
20.4	Concluding Remarks and Perspectives 342
20.4.1	New Promising Developments 342
20.4.2	Summary 343
	References 344
21	Oxidative Conversion of Renewable Feedstock: Carbohydrate
	Oxidation 349
	Cristina Della Pina, Ermelinda Falletta, and Michele Rossi
21.1	Introduction 349
21.2	Chemistry and Catalysis 351
21.2.1	Oxidation of Monosaccharides 354
21.2.2	Oxidation of Disaccharides 358
21.2.3	Polysaccharide Oxidation 361
21.3	Prospects for Scale-Up 362
21.3.1	Enzymatic Process versus Chemical Process: Glucose Oxidation as a
	Model Reaction 362
21.3.2	Enzymatic Oxidation: Industrial Process and Prospects 363
21.3.3	Chemical Oxidation: Industrial Process and Prospects 364
21.3.3.1	Metal Catalysts: Concepts Guiding Choice and Design 364
21.4	Concluding Remarks and Perspectives 366
	References 367

•	Part VII Aerobic Oxidation with Singlet Oxygen 369
22	Industrial Prospects for the Chemical and Photochemical Singlet
	Oxygenation of Organic Compounds 371
	Véronique Nardello-Rataj, Paul L. Alsters, and Jean-Marie Aubry
22.1	Introduction 371
22.2	Chemistry and Catalysis 373
22.2.1	Comparison of Singlet and Triplet Oxygen 373
22.2.2	Photochemical Generation of ${}^{1}O_{2}$ 375
22.2.3	Chemicals Sources of ${}^{1}O_{2}$ Based on the Catalytic Disproportionation of $H_{2}O_{2}$ 376
22.2.4	Optimal Generation of ${}^{1}O_{2}$ Through the Catalytic System $H_{2}O_{2}/MoO_{4}{}^{2-}$ 379
22.2.5	Potential Molecular Targets for Singlet Oxygenation 380
22.3	Prospects for Scale-Up 383
22.3.1	Respective Advantages and Disadvantages of "Dark" and "Luminous" Singlet Oxygenation 383
22.3.2	Choice of the Medium for Dark Singlet Oxygenation 384
22.3.2.1	Homogeneous Aqueous and Alcoholic Media 384
22.3.2.2	Single-Phase Microemulsions 385
22.3.2.3	Multiphase Microemulsions with Balanced Catalytic
	Surfactants 387
22.3.3	Examples of Industrialized Singlet Oxygenation 388
22.3.3.1	Synthesis of Artemisinin 389
22.3.3.2	Synthesis of Rose Oxide 391
22.4	Conclusion 392
	Acknowledgments 392
	References 393
	Part VIII Reactor Concepts for Liquid Phase Aerobic Oxidation 397
23	Reactor Concepts for Aerobic Liquid Phase Oxidation: Microreactors
	and Tube Reactors 399
	Hannes P. L. Gemoets, Volker Hessel, and Timothy Noël
23.1	Introduction 399
23.2	Chemistry and Catalysis 400
23.2.1	Transition Metal-Catalyzed Aerobic Oxidations in Continuous Flow 400
23.2.2	Photosensitized Singlet Oxygen Oxidations in Continuous Flow 404
23.2.3	Metal-Free Aerobic Oxidations in Continuous Flow 408
23.2.4	Aerobic Coupling Chemistry in Continuous Flow 410
23.3	Prospects for Scale-Up 413
23.4	Conclusions 417
	References 417