Arun K. Ghosh and Sandra Gemma

Structure-based Design of Drugs and Other Bioactive Molecules

Tools and Strategies

Contents

Preface XIII

1 From Traditional Medicine to Modern Drugs: Historical Perspective of Structure-Based Drug Design 1

- 1.1 Introduction 1
- 1.2 Drug Discovery During 1928–1980 1
- 1.3 The Beginning of Structure-Based Drug Design 6
- 1.4 Conclusions 12
 - References 13

Part One	Concepts, Tools, Liga	nds, and Scaffolds for Structure-Based
	Design of Inhibitors	19

2 Design of Inhibitors of Aspartic Acid Proteases 21

- 2.1 Introduction 21
- 2.2 Design of Peptidomimetic Inhibitors of Aspartic Acid Proteases 22
- 2.3 Design of Statine-Based Inhibitors 24
- 2.4 Design of Hydroxyethylene Isostere-Based Inhibitors 29
- 2.5 Design of Inhibitors with Hydroxyethylamine Isosteres 35
- 2.5.1 Synthesis of Optically Active α-Aminoalkyl Epoxide 37
- 2.6 Design of (Hydroxyethyl)urea-Based Inhibitors 40
- 2.7 (Hydroxyethyl)sulfonamide-Based Inhibitors 42
- 2.8 Design of Heterocyclic/Nonpeptidomimetic Aspartic Acid Protease Inhibitors 42
- 2.8.1 Hydroxycoumarin- and Hydroxypyrone-Based Inhibitors 44
- 2.8.2 Design of Substituted Piperidine-Based Inhibitors 46
- 2.8.3 Design of Diaminopyrimidine-Based Inhibitors 50
- 2.8.4 Design of Acyl Guanidine-Based Inhibitors 51
- 2.8.5 Design of Aminopyridine-Based Inhibitors 53
- 2.8.6 Design of Aminoimidazole- and Aminohydantoin-Based Inhibitors 53
- 2.9 Conclusions 56
 - References 56

VI | Contents

- Design of Serine Protease Inhibitors 67 3 3.1 Introduction 67 Catalytic Mechanism of Serine Protease 3.2 67 3.3 Types of Serine Protease Inhibitors 67 3.4 Halomethyl Ketone-Based Inhibitors 69 3.5 70 Diphenyl Phosphonate-Based Inhibitors 3.6 Trifluoromethyl Ketone Based Inhibitors 73 3.6.1 Synthesis of Trifluoromethyl Ketones 76 3.7 Peptidyl Boronic Acid-Based Inhibitors 78 Synthesis of α-Aminoalkyl Boronic Acid Derivatives 83 3.7.1 Peptidyl α-Ketoamide- and α-Ketoheterocycle-Based Inhibitors 85 3.8 3.8.1 Synthesis of α -Ketoamide and α -Ketoheterocyclic Templates Design of Serine Protease Inhibitors Based Upon Heterocycles 93 3.9 Isocoumarin-Derived Irreversible Inhibitors 94 391 392 β-Lactam-Derived Irreversible Inhibitors 95 3.10 Reversible/Noncovalent Inhibitors 97 3.11 Conclusions 104 References 105 4 Design of Proteasome Inhibitors 113 4.1 Introduction 113 4.2 Catalytic Mechanism of 20S Proteasome 113 4.3 Proteasome Inhibitors 114 4.3.1 Development of Boronate Proteasome Inhibitors 115 432 Development of β-Lactone Natural Product-Based Proteasome Inhibitors 116 4.3.3 Development of Epoxy Ketone-Derived Inhibitors 118 4.3.4 Noncovalent Proteasome Inhibitors 120 4.4 Synthesis of β-Lactone Scaffold 121 4.5 Synthesis of Epoxy Ketone Scaffold 123 4.6 Conclusions 126 References 126 5 Design of Cysteine Protease Inhibitors 131 5.1 Introduction 131 5.2 Development of Cysteine Protease Inhibitors with Michael Acceptors 132 5.3 Design of Noncovalent Cysteine Protease Inhibitors 136 5.4 Conclusions 140 References 140 6 **Design of Metalloprotease Inhibitors** 143 6.1 Introduction 143
 - 6.2 Design of Matrix Metalloprotease Inhibitors 144

6.3	Design of Inhibitors of Tumor Necrosis Factor-α-Converting
	Enzymes 150
6.4	Conclusions 152
	References 152

7 Structure-Based Design of Protein Kinase Inhibitors 155

- 7.1 Introduction 155
- 7.2 Active Site of Protein Kinases 155
- 7.3 Catalytic Mechanism of Protein Kinases 156
- 7.4 Design Strategy for Protein Kinase Inhibitors 156
- 7.5 Nature of Kinase Inhibitors Based upon Binding 160
- 7.5.1 Type I Kinase Inhibitors and Their Design 160
- 7.5.2 Type II Kinase Inhibitors and Their Design 164
- 7.5.3 Allosteric Kinase Inhibitors and Their Design 168
- 7.5.4 Covalent Kinase Inhibitors and Their Design 172
- 7.6 Conclusions 177 References 177

8 Protein X-Ray Crystallography in Structure-Based Drug Design 183

- 8.1 Introduction 183
- 8.2 Protein Expression and Purification 184
- 8.3 Synchrotron Radiation 185
- 8.4 Structural Biology in Fragment-Based Drug Design 186
- 8.5 Selected Examples of Fragment-Based Studies 187
- 8.6 Conclusions 196
 - References 197
- 9 Structure-Based Design Strategies for Targeting G-Protein-Coupled Receptors (GPCRs) 199
- 9.1 Introduction 199
- 9.2 High-Resolution Structures of GPCRs 200
- 9.3 Virtual Screening Applied to the β₂-Adrenergic Receptor 201
- 9.4 Structure-Based Design of Adenosine A_{2A} Receptor Antagonists 204
- 9.5 Structure-Guided Design of CCR5 Antagonists 207
- 9.5.1 Development of Maraviroc from HTS Lead Molecules 207
- 9.5.2 Improvement of Antiviral Activity and Reduction of Cytochrome P450 Activity 208
- 9.5.3 Reduction of hERG Activity and Optimization of Pharmacokinetic Profile 209
- 9.5.4 Other CCR5 Antagonists 213
- 9.6 Conclusion 213 References 213

VIII | Contents

Part Two	Structure-Based Design of FDA-Approved Inhibitor Drugs and Drugs Undergoing Clinical Development 217
10	Angiotensin-Converting Enzyme Inhibitors for the Treatment of Hypertension: Design and Discovery of Captopril 219
10.1	Introduction 219
10.2	Design of Captopril: the First Clinically Approved Angiotensin-Converting Enzyme Inhibitor 220
10.3	Structure of Angiotensin-Converting Enzyme 225
10.4	Design of ACE Inhibitors Containing a Carboxylate as Zinc Binding Group 228
10.5	ACE Inhibitors Bearing Phosphorus-Based Zinc Binding Groups 231
10.5.1	Phosphonamidate-Based Inhibitors 232
10.5.2	Phosphonic and Phosphinic Acid Derivatives: the Path to Fosinopril 233
10.6	Conclusions 234 References 235
11	HIV-1 Protease Inhibitors for the Treatment of HIV Infection and AIDS: Design of Saquinavir, Indinavir, and Darunavir 237
11.1	Introduction 237
11.2	Structure of HIV Protease and Design of Peptidomimetic Inhibitors Containing Transition-State Isosteres 239
11.3	Saquinavir: the First Clinically Approved HIV-1 Protease Inhibitor 241
11.4	Indinavir: an HIV Protease Inhibitor Containing the Hydroxyethylene Transition-State Isostere 246
11.5	Design and Development of Darunavir 251
11.6	Design of Cyclic Ether Templates in Drug Discovery 252
11.7	Investigation of Cyclic Sulfones as P ₂ Ligands 255
11.8	Design of Bis-tetrahydrofuran and Other Bicyclic P ₂ Ligands 257
11.9	The "Backbone Binding Concept" to Combat Drug Resistance: Inhibitor Design Strategy Promoting Extensive Backbone Hydrogen Bonding from S_2 to S_2 ' Subsites 259
11.10	Design of Darunavir and Other Inhibitors with Clinical Potential 263
11.11	Conclusions 266
	References 266
12	Protein Kinase Inhibitor Drugs for Targeted Cancer Therapy: Design and Discovery of Imatinib, Nilotinib, Bafetinib, and Dasatinib 271
12.1	Introduction 271
12.2	Evolution of Kinase Inhibitors as Anticancer Agents 272
12.3	The Discovery of Imatinib 274
12.4	Imatinib: the Structural Basis of Selectivity 275
12.5	Pharmacological Profile and Clinical Development 278

12.6	Imatinib Resistance 279		
12.7	Different Strategies for Combating Drug Resistance 279		
12.7.1	Nilotinib and Bafetinib: Optimizing Drug–Target Interactions 279		
12.7.2	Dasatinib: Binding to the Active Conformation (the First		
	Example of Dual Abl/Src Inhibitors) 284		
12.8	Conclusions 289		
	References 290		
13	NS3/4A Serine Protease Inhibitors for the Treatment of HCV:		
	Design and Discovery of Boceprevir and Telaprevir 295		
13.1	Introduction 295		
13.2	NS3/4A Structure 296		
13.3	Mechanism of Peptide Hydrolysis by NS3/4A Serine Protease 299		
13.4	Development of Mechanism-Based Inhibitors 300		
13.5	Strategies for the Development of HCV NS3/4A Protease		
	Inhibitors 303		
13.6	Initial Studies toward the Development of Boceprevir 304		
13.7	Reduction of Peptidic Character 308		
13.8	Optimization of P_2 Interactions 309		
13.9	Truncation Strategy: the Path to Discovery of Boceprevir 312		
13.10	The Discovery of Telaprevir 314		
13.11	Simultaneous P_1 , P_1' , P_2 , P_3 , and P_4 Optimization Strategy.		
	the Path to Discovery of Telaprevir 316		
13.12	Conclusions 319		
	References 319		
14	Proteasome Inhibitors for the Treatment of Relapsed Multiple Myeloma:		
	Design and Discovery of Bortezomib and Carfilzomib 325		
14.1	Introduction 325		
14.2	Discovery of Bortezomib 326		
14.3	Discovery of Carfilzomib 330		
14.4	Conclusions 334		
	References 334		
15	Development of Direct Thrombin Inhibitor, Dabigatran Etexilate,		
	as an Anticoagulant Drug 337		
15.1	Introduction 337		
15.2	Coagulation Cascade and Anticoagulant Drugs 338		
15.3	Anticoagulant Therapies 340		
15.4	Structure of Thrombin 342		
15.5	The Discovery of Dabigatran Etexilate 345		
15.6	Conclusions 353		
	References 353		

X Contents

16	Non-Nucleoside HIV Reverse Transcriptase Inhibitors for the	
	Treatment of HIV/AIDS: Design and Development	
	of Etravirine and Rilpivirine 355	
16.1	Introduction 355	
16.2	Structure of the HIV Reverse Transcriptase 357	
16.3	Discovery of Etravirine and Rilpivirine 360	
16.4	Conclusions 368	
	References 370	
17	Renin Inhibitor for the Treatment of Hypertension: Design and	
	Discovery of Aliskiren 373	
17.1	Introduction 373	
17.2	Structure of Renin 373	
17.3	Peptidic Inhibitors with Transition-State Isosteres 374	
17.4	Peptidomimetic Inhibitors 376	
17.5	Design of Peptidomimetic Inhibitors 380	
17.6	Biological Properties of Aliskiren 393	
17.7	Conclusions 393	
	References 394	
18	Neuraminidase Inhibitors for the Treatment of Influenza: Design and	
	Discovery of Zanamivir and Oseltamivir 397	
18.1	Introduction 397	
18.2	Discovery of Zanamivir 401	
18.3	Discovery of Oseltamivir 403	
18.4	Conclusions 407	
	References 408	
19	Carbonic Anhydrase Inhibitors for the Treatment of Glaucoma:	
	Design and Discovery of Dorzolamide 411	
19.1	Introduction 411	
19.2	Design and Discovery of Dorzolamide 412	
19.3	Conclusions 418	
	References 418	
20	eta-Secretase Inhibitors for the Treatment of Alzheimer's Disease:	
	Preclinical and Clinical Inhibitors 421	
20.1	Introduction 421	
20.2	β-Secretase and Its X-Ray Structure 422	
20.3	Development of First Peptidomimetic BACE Inhibitors 423	
20.4	X-Ray Structure of Inhibitor-Bound BACE1 425	
20.5	Design and Development of Selective Inhibitors 427	
20.6	Design of Small-Molecule Inhibitors with Clinical Potential 431	
20.7	GRL-8234 (18) Rescued Cognitive Decline in AD Mice 435	
20.8	BACE1 Inhibitors for Clinical Development 436	

- 20.8.1 Development of Clinical Inhibitor, AZD3839 436
- 20.8.2 Development of Iminopyrimidinone-Based BACE1 Inhibitors 440
- 20.9 Conclusions 443 References 444

Index 449