René Carmona • François Delarue

Probabilistic Theory of Mean Field Games with Applications

Mean Field Games with Common Noise and Master Equations

Springer
Volume I

Part I The Probabilistic Approach to Mean Field Games

1 Learning by Examples: What Is a Mean Field Game? 3
 1.1 Introduction of the Key Ingredients ... 3
 1.1.1 First Example: A One-Period Deterministic Game 4
 1.1.2 Nash Equilibria and Best Response Functions 6
 1.1.3 Large Games Asymptotics ... 6
 1.1.4 Potential Games and Informed Central Planner 14
 1.1.5 A Simple One-Period Stochastic Game 15
 1.2 Games of Timing .. 19
 1.2.1 A Static Model of Bank Run .. 20
 1.2.2 A Diffusion Model of Bank Runs ... 27
 1.3 Financial Applications .. 31
 1.3.1 An Explicitly Solvable Toy Model of Systemic Risk 31
 1.3.2 A Price Impact Model ... 33
 1.4 Economic Applications ... 36
 1.4.1 Pareto Distributions and a Macro-Economic Growth Model .. 36
 1.4.2 Variation on Krusell-Smith's Macro-Economic Growth Model 38
 1.4.3 A Diffusion Form of Aiyagari's Growth Model 42
 1.4.4 Production of Exhaustible Resources ... 44
 1.5 Large Population Behavior Models .. 47
 1.5.1 The Cucker-Smale Model of Flocking 47
 1.5.2 An Attraction-Repulsion Model .. 50
 1.5.3 Congestion Models for Crowd Behavior 51
 1.6 Discrete State Game Models .. 52
 1.6.1 A Queuing-Like Limit Order Book Model 53
 1.6.2 A Simple Cyber Security Model ... 53
 1.6.3 Searching for Knowledge ... 54
 1.7 Notes & Complements .. 61

2 Probabilistic Approach to Stochastic Differential Games 67
 2.1 Introduction and First Definitions .. 67
 2.1.1 A Typical Set-Up for Stochastic Differential Games 70
 2.1.2 Cost Functionals and Notions of Optimality 71
 2.1.3 Players' Hamiltonians ... 76
 2.1.4 The Case of Markovian Diffusion Dynamics 78
 2.2 Game Versions of the Stochastic Maximum Principle 84
 2.2.1 Open Loop Equilibria ... 85
 2.2.2 Markovian Nash Equilibria .. 89
 2.3 N-Player Games with Mean Field Interactions 95
 2.3.1 The N-Player Game ... 95
 2.3.2 Hamiltonians and the Stochastic Maximum Principle 97
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.3</td>
<td>Potential Stochastic Differential Games</td>
<td>99</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Linear Quadratic Games with Mean Field Interactions</td>
<td>104</td>
</tr>
<tr>
<td>2.4</td>
<td>The Linear Quadratic Version of the Flocking Model</td>
<td>107</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Open Loop Nash Equilibria</td>
<td>107</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Markovian Nash Equilibrium by the Stochastic Maximum Approach</td>
<td>111</td>
</tr>
<tr>
<td>2.5</td>
<td>The Coupled OU Model of Systemic Risk</td>
<td>114</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Open Loop Nash Equilibria</td>
<td>115</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Markovian Nash Equilibrium by the Stochastic Maximum Approach</td>
<td>119</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Markovian Nash Equilibria by PDE Methods</td>
<td>123</td>
</tr>
<tr>
<td>2.6</td>
<td>Notes & Complements</td>
<td>125</td>
</tr>
<tr>
<td>3</td>
<td>Stochastic Differential Mean Field Games</td>
<td>129</td>
</tr>
<tr>
<td>3.1</td>
<td>Notation, Assumptions, and Preliminaries</td>
<td>129</td>
</tr>
<tr>
<td>3.1.1</td>
<td>The N Player Game</td>
<td>130</td>
</tr>
<tr>
<td>3.1.2</td>
<td>The Mean Field Game Problem</td>
<td>132</td>
</tr>
<tr>
<td>3.1.3</td>
<td>An Alternative Description of the Mean Field Game Problem</td>
<td>133</td>
</tr>
<tr>
<td>3.1.4</td>
<td>The Hamiltonian</td>
<td>135</td>
</tr>
<tr>
<td>3.1.5</td>
<td>The Analytic Approach to MFGs</td>
<td>139</td>
</tr>
<tr>
<td>3.2</td>
<td>Why and Which FBSDEs?</td>
<td>140</td>
</tr>
<tr>
<td>3.2.1</td>
<td>FBSDEs and Control Problems</td>
<td>142</td>
</tr>
<tr>
<td>3.2.2</td>
<td>FBSDEs of McKean-Vlasov Type and MFGs</td>
<td>144</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Road Map to the Solution of FBSDEs of the McKean-Vlasov Type</td>
<td>146</td>
</tr>
<tr>
<td>3.3</td>
<td>The Two-Pronged Probabilistic Approach</td>
<td>153</td>
</tr>
<tr>
<td>3.3.1</td>
<td>The Weak Formulation Approach</td>
<td>153</td>
</tr>
<tr>
<td>3.3.2</td>
<td>The Stochastic Maximum Principle Approach</td>
<td>161</td>
</tr>
<tr>
<td>3.4</td>
<td>Lasry-Lions Monotonicity Condition</td>
<td>167</td>
</tr>
<tr>
<td>3.4.1</td>
<td>A First Notion of Monotonicity</td>
<td>168</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Examples</td>
<td>172</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Another Form of Monotonicity</td>
<td>174</td>
</tr>
<tr>
<td>3.5</td>
<td>Linear Quadratic Mean Field Games</td>
<td>179</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Connection with Deterministic Control Theory</td>
<td>185</td>
</tr>
<tr>
<td>3.5.2</td>
<td>The One-Dimensional Case $d = k = 1$</td>
<td>188</td>
</tr>
<tr>
<td>3.6</td>
<td>Revisiting Some of the Examples of Chapter 1</td>
<td>191</td>
</tr>
<tr>
<td>3.6.1</td>
<td>A Particular Case of the Flocking Model</td>
<td>191</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Systemic Risk Example Without Common Noise</td>
<td>193</td>
</tr>
<tr>
<td>3.6.3</td>
<td>The Diffusion Form of Aiyagari's Growth Model</td>
<td>195</td>
</tr>
<tr>
<td>3.7</td>
<td>Games with a Continuum of Players</td>
<td>200</td>
</tr>
<tr>
<td>3.7.1</td>
<td>The Exact Law of Large Numbers</td>
<td>202</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Mean Field Games with a Continuum of Players</td>
<td>206</td>
</tr>
<tr>
<td>3.8</td>
<td>Notes & Complements</td>
<td>209</td>
</tr>
</tbody>
</table>
5.2 Differentiability of Functions of Probability Measures 378
 5.2.1 Structure of the L-Derivative .. 379
 5.2.2 Examples .. 385
5.3 Regularity Properties of the L-Differentials 390
 5.3.1 Measure Theoretical Preliminaries 391
 5.3.2 L-Differentiability of Functions of Empirical Measures 399
 5.3.3 Lipschitz L-Differentials and Regular Versions 400
 5.3.4 Joint Differentiability ... 409
5.4 Comparisons with Other Notions of Differentiability 414
 5.4.1 Smooth Functions of Measures .. 415
 5.4.2 From the L-Derivative to the Functional Derivative 420
 5.4.3 Geometric Analysis on the Wasserstein Space $\mathcal{P}_2(\mathbb{R}^d)$ 424
 5.4.4 Finite State Spaces ... 437
5.5 Convex Functions of Probability Measures 449
 5.5.1 L-Convexity for Functions of Probability Measures 449
 5.5.2 L-Convexity and Monotonicity ... 456
 5.5.3 Displacement Convexity .. 458
5.6 Itô’s Formula Along a Flow of Measures 461
 5.6.1 Possible Road Maps for the Proof 461
 5.6.2 Full C^2-Regularity ... 464
 5.6.3 Chain Rule Under Full C^2-Regularity 471
 5.6.4 Partial C^2-Regularity .. 476
 5.6.5 Sufficient Condition for Partial C^2-Regularity 489
5.7 Applications .. 495
 5.7.1 Revisiting Uniqueness in MFG .. 495
 5.7.2 A Primer on the Master Equation 497
 5.7.3 Application to a Nonstandard Control Problem 499
 5.7.4 Application to McKean-Vlasov SDEs 502
5.8 Notes & Complements .. 510

6 Optimal Control of SDEs of McKean-Vlasov Type 513
 6.1 Introduction ... 513
 6.2 Probabilistic and Analytic Formulations 518
 6.2.1 Probabilistic Formulation of the Optimization Problem 518
 6.2.2 Reformulation as a Deterministic Optimal Control Problem 521
 6.2.3 The State Variable, the Hamiltonian, and the Adjoint Variables .. 523
 6.2.4 Pontryagin Maximum Principles for Both Formulations 529
 6.2.5 Connecting the Two Approaches with Mean Field Games 535
 6.3 Stochastic Pontryagin Principle for Optimality 542
 6.3.1 A Necessary Condition .. 543
 6.3.2 A Sufficient Condition ... 549
 6.3.3 Special Cases .. 552
 6.4 Solvability of the Pontryagin FBSDE 555
 6.4.1 Technical Assumptions .. 555
Contents

6.4.2 The Hamiltonian and the Adjoint Equations 557
6.4.3 Main Existence and Uniqueness Result 559

6.5 Several Forms of the Master Equation ... 564
6.5.1 Dynamic Programming Principle ... 564
6.5.2 Derivation of the Master Equation for the Value Function 570
6.5.3 A Master Equation for the Derivative of the Value Function 575

6.6 A Weak Formulation Bypassing Pontryagin Principle 578
6.6.1 Introduction of the Weak Formulation 578
6.6.2 Relaxed Controls ... 582
6.6.3 Minimization Under the Weak Relaxed Formulation 585
6.6.4 Proof of the Solvability Under the Weak Relaxed Formulation 588

6.7 Examples ... 596
6.7.1 Linear Quadratic (LQ) McKean Vlasov (Mean Field) Control 596
6.7.2 Potential MFGs and MKV Optimization 602
6.7.3 Optimal Transportation as an MKV Control Problem 608
6.7.4 Back to the Diffusion Form of Aiyagari's Growth Model 612

6.8 Notes & Complements ... 614

Epilogue to Volume I

7 Extensions for Volume I ... 621
7.1 First Extensions .. 621
7.1.1 Mean Field Games with Several Populations 621
7.1.2 Infinite Horizon MFGs ... 629

7.2 Mean Field Games with Finitely Many States 640
7.2.1 N Player Symmetric Games in a Finite State Space 643
7.2.2 Mean Field Game Formulation .. 645
7.2.3 A First Form of the Cyber-Security Model 655
7.2.4 Special Cases of MFGs with Finite State Spaces 660
7.2.5 Counter-Example to the Convergence of Markovian Equilibria 667

7.3 Notes & Complements ... 677

References ... 681

Assumption Index ... 697

Notation Index .. 699

Author Index ... 703

Subject Index .. 709
Contents

Volume II

Contents of Volume I ... xx

Part I MFGs with a Common Noise

1 Optimization in a Random Environment 3
 1.1 FBSDEs in a Random Environment .. 3
 1.1.1 Immersion and Compatibility 5
 1.1.2 Compatible Probabilistic Set-Up 9
 1.1.3 Kunita-Watanabe Decomposition and Definition of a
 Solution ... 13
 1.2 Strong Versus Weak Solution of an FBSDE 16
 1.2.1 Notions of Uniqueness .. 16
 1.2.2 Canonical Spaces ... 22
 1.2.3 Yamada-Watanabe Theorem for FBSDEs 30
 1.3 Initial Information, Small Time Solvability, and Decoupling
 Field .. 42
 1.3.1 Disintegration of FBSDEs ... 42
 1.3.2 Small Time Solvability and Decoupling Field 54
 1.3.3 Induction Procedure ... 63
 1.4 Optimization with Random Coefficients 73
 1.4.1 Optimization Problem .. 73
 1.4.2 Value Function and Stochastic HJB Equation 77
 1.4.3 Revisiting the Connection Between the HJB
 Equations and BSDEs .. 79
 1.4.4 Revisiting the Pontryagin Stochastic Maximum Principle .. 96
 1.5 Notes & Complements .. 104

2 MFGs with a Common Noise: Strong and Weak Solutions 107
 2.1 Conditional Propagation of Chaos 107
 2.1.1 N-Player Games with a Common Noise 108
 2.1.2 Set-Up for a Conditional McKean-Vlasov Theory 109
2.1.3 Formulation of the Limit Problem .. 112
2.1.4 Conditional Propagation of Chaos 120

2.2 Strong Solutions to MFGs with Common Noise 125
 2.2.1 Solution Strategy for Mean Field Games 125
 2.2.2 Revisiting the Probabilistic Set-Up 128
 2.2.3 FBSDE Formulation of the First Step in the Search for a Solution ... 131
 2.2.4 Strong MFG Matching Problem: Solutions and Strong Solvability ... 135

2.3 Weak Solutions for MFGs with Common Noise 141
 2.3.1 Weak MFG Matching Problem ... 141
 2.3.2 Yamada-Watanabe Theorem for MFG Equilibria 144
 2.3.3 Infinite Dimensional Stochastic FBSDEs 150

2.4 Notes & Complements .. 151

3 Solving MFGs with a Common Noise ... 155
 3.1 Introduction ... 155
 3.1.1 Road Map to Weak Solutions 155
 3.1.2 Statement of the Problem ... 156
 3.1.3 Overview of the Strategy .. 157
 3.1.4 Assumption and Main Statement 158
 3.2 Stability of Weak Equilibria ... 161
 3.2.1 Passing to the Limit in a Sequence of Weak Equilibria 161
 3.2.2 Meyer-Zheng Topology .. 162
 3.2.3 Back to MFGs with Common Noise and Main Result 168
 3.2.4 Proof of the Weak Stability of Optimal Paths 176
 3.2.5 Proof of the Solvability Theorem 186
 3.3 Solving MFGs by Constructing Approximate Equilibria 190
 3.3.1 Approximate Problem ... 190
 3.3.2 Solvability of the Approximate Fixed Point Problem 194
 3.3.3 Tightness of the Approximating Solutions 199
 3.3.4 Extraction of a Subsequence 205
 3.4 Explicit Solvability Results .. 208
 3.4.1 Using the Representation of the Value Function 208
 3.4.2 Using the Stochastic Pontryagin Principle 210
 3.4.3 Allowing for Quadratic Cost Functionals 212
 3.4.4 Proof of the Approximation Lemma 214
 3.5 Uniqueness of Strong Solutions ... 221
 3.5.1 Lasry-Lions Monotonicity Condition 221
 3.5.2 Common Noise and Restoration of Uniqueness 223
 3.5.3 Auxiliary Results for the Restoration of Uniqueness 226
 3.5.4 Proof of the Restoration of Uniqueness 229
 3.5.5 Further Developments on Weak Solutions 232
 3.6 Notes & Complements .. 234
5.4 Application to Mean Field Games
5.4.1 Mean Field Games in Small Time
5.4.2 Mean Field Games Over Time Intervals of Arbitrary Lengths
5.4.3 Main Statement
5.4.4 Proof of the Main Statement

5.5 Notes & Complements

6 Convergence and Approximations
6.1 Approximate Equilibria for Finite-Player Games
6.1.1 The Case of the MFGs Without Common Noise
6.1.2 The Case of the MFGs with a Common Noise
6.1.3 The Case of the Control of McKean-Vlasov SDEs
6.2 Limits of Open-Loop N-Player Equilibria
6.2.1 Possible Strategies for Passing to the Limit in the N-Player Game
6.2.2 Weak Limits of Open Loop N-Player Equilibria
6.2.3 Proof of the Convergence
6.3 Limits of Markovian N-Player Equilibria
6.3.1 Main Statement
6.3.2 The Master Equation as an Almost Solution of the N-Nash System
6.3.3 Proving the Convergence of the Nash System
6.3.4 Propagation of Chaos for the N-Player Game
6.4 Notes & Complements

7 Extensions for Volume II
7.1 Mean Field Games with Major and Minor Players
7.1.1 Isolating Strong Influential Players
7.1.2 Formulation of the Open Loop MFG Problem
7.1.3 Aside: Alternative Formulations of the Mean Field Game Problems
7.1.4 Back to the General Open Loop Problem
7.1.5 Conditional Propagation of Chaos and ε-Nash Equilibria
7.1.6 The Linear Quadratic Case
7.1.7 An Enlightening Example
7.1.8 Alternative Approaches to the Linear Quadratic Models
7.1.9 An Example with Finitely Many States
7.1.10 The Search for Nash Equilibria
7.2 Mean Field Games of Timing
7.2.1 Revisiting the Bank Run Diffusion Model of Chapter 1 (First Volume)
7.2.2 Formulation of the MFG of Timing Problem
7.2.3 Existence of Strong Equilibria for MFGs of Timing
7.2.4 Randomized Measures and Stopping Times
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.5</td>
<td>Approximation of Adapted Processes Under Compatibility</td>
<td>627</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Equilibria in the Weak Sense for MFGs of Timing</td>
<td>634</td>
</tr>
<tr>
<td>7.2.7</td>
<td>Weak Equilibria as Limits of Finite Player Games</td>
<td>638</td>
</tr>
<tr>
<td>7.2.8</td>
<td>Existence of Weak Equilibria Under Continuity Assumptions</td>
<td>644</td>
</tr>
<tr>
<td>7.2.9</td>
<td>Mean Field Games of Timing with Major and Minor Players</td>
<td>653</td>
</tr>
<tr>
<td>7.2.10</td>
<td>An Explicitly Solvable Toy Model</td>
<td>656</td>
</tr>
<tr>
<td>7.3</td>
<td>Notes & Complements</td>
<td>661</td>
</tr>
</tbody>
</table>

References .. 665

Assumption Index ... 681

Notation Index .. 683

Author Index ... 687

Subject Index ... 691