Alessio Figalli

The Monge-Ampère Equation and Its Applications
Contents

Preface .. vii

1 Introduction .. 1
 1.1 On the degeneracy of the Monge–Ampère equation 1
 1.2 Some history 4

2 Alexandrov solutions 7
 2.1 The Monge–Ampère measure 7
 2.2 Alexandrov solutions: Definition and basic properties 11
 2.3 The Dirichlet problem: Uniqueness 17
 2.4 The Dirichlet problem: Existence 20
 2.5 C^1 regularity in 2-D 28
 2.6 Application 1: The Minkowski problem for curvature measures ... 34

3 Smooth solutions 39
 3.1 Existence of smooth solutions by the continuity method ... 39
 3.2 Pogorelov’s counterexample to interior regularity 53
 3.3 Pogorelov’s interior estimates and regularity of weak solutions ... 56

4 Interior regularity of weak solutions 65
 4.1 Sections and normalized solutions 65
 4.2 On the strict convexity of solutions 74
 4.3 A Liouville theorem 86
 4.4 Application 2: Petty’s theorem 90
 4.5 Interior $C^{1,\alpha}$ estimates 93
 4.6 Application 3: The optimal transport problem with quadratic cost ... 95
 4.7 Geometry of sections 106
 4.8 Interior $W^{2,p}$ estimates 111
 4.9 Application 4: The semigeostrophic equations 127
 4.10 Interior $C^{2,\alpha}$ regularity 130
 4.11 Wang’s counterexamples 137

5 Further results and extensions 141
 5.1 Further results on the Monge–Ampère equation 141
 5.2 The linearized Monge–Ampère equation 148
 5.3 A general class of Monge–Ampère-type equations 150