Cellulose Nanocrystals

Properties, Production, and Applications

WADOOD Y. HAMAD

Cellulosic Biomaterials, FPInnovations, Vancouver, Canada Department of Chemistry, University of British Columbia, Vancouver, Canada

Contents

Series Preface x							
Fo	Foreword Prologue x						
Pr							
1	New	Frontiers for Material Development and the					
	Challenge of Nanotechnology						
	1.1	Perspectives on Nanotechnology	1				
	1.2	Societal Ramifications of Nanotechnology	3				
	1.3	Bio-inspired Material Development: The Case for Cellulose					
		Nanocrystals	5				
	1.4	A Glance at Bio-inspired Hierarchical Materials	9				
	1.5	Concluding Thoughts	13				
	Note	'S	13				
2	Assembly and Structure in Native Cellulosic Fibers						
	2.1	Physical and Chemical Characteristics of the Cellulose Molecule	16				
		2.1.1 The Origin of Cellulose	16				
		2.1.2 The Chemistry of Cellulose	18				
		2.1.3 The Physics of Cellulose	20				
	2.2	Morphology and Structure of Native Cellulosic Fibers	22				
	2.3	Physical and Mechanical Properties of Native Cellulosic Fibers	25				
		2.3.1 Anisotropy of the Fiber Cell Wall	25				
		2.3.2 Mechanical Properties of Cellulosic Fibers	29				
	Note	's	32				
3	Hydrolytic Extraction of Cellulose Nanocrystals						
	3.1	Introduction	33				
	3.2	The Liberation of CNCs Using Acid Hydrolysis	35				

	3.3		on Kinetics of CNC Extraction Effects of H ₂ SO ₄ Hydrolysis Conditions and	38
		3.3.1	Sulfation on CNC Yield of Extraction	38
		3.3.2	$H_{2}SO_{4}$ Hydrolysis Reproducibility and	
		3.3.2	Yield Optimization	46
		222	Commentary on Hydrochloric Acid-Hydrolyzed CNCs	48
		231	CNC Stability and Post H_2SO_4 -Hydrolysis Aging	49
	3.4	Drocer	ssing Considerations for Sustainable and	
	5.4	Ficeno	mical Manufacture of CNCs	50
	3.5	Micro	/Nano Cellulosics Other Than CNCs	53
	5.5		Microfibrillated Cellulose	53
			Microcrystalline Cellulose	57
			Bacterial Cellulose	60
	Note		Datemai Centrose	62
	nou	-3		
4	Pro	perties	of Cellulose Nanocrystals	65
-	4.1		nological Characteristics of CNCs	65
	4.2		ural Organization of CNCs	68
	4.3		State Characteristics of CNCs	74
			X-Ray Diffractometric Analysis of CNCs	76
			CNCs Phase Structure Based on SS-NMR	81
			Concluding Remarks	87
	4.4		Chiral Nematic Phase Properties	87
		4.4.1	Ionic Strength Effect on Chiral Phase Separation	88
		4.4.2		91
		4.4.3	Suspension Concentration Effect on Chiral	
			Phase Separation	92
		4.4.4	Magnetic Field Effect on Chiral Phase Separation	94
		4.4.5	Sonication Effect on Physicochemical Properties	94
	4.5	Shear	Rheology of CNC Aqueous Suspensions	95
		4.5.1	Basic Rheological Behavior of CNC	
			Aqueous Suspensions	95
		4.5.2	Sonication Effects on the Microstructure and	
			Rheological Properties of CNCs Suspensions	98
		4.5.3	Concentration Effects on the Microstructure and	
			Rheological Properties of CNC Suspensions	100
		4.5.4	Temperature Effects on the Microstructure and	
			Rheological Properties of CNC Suspensions	106
		4.5.5	CNCs Surface Charge Effects on the Microstructure and	
			Rheological Properties of CNC Suspensions	112
		4.5.6	Ionic Strength Effects on the Microstructure and	
			Rheological Properties of CNC Suspensions	118

		4.5.7	Aging and Yielding Characteristics of CNC			
			Suspensions	123		
		4.5.8	Concluding Remarks	128		
	4.6	Therm	nal Stability of CNCs	129		
	Note	es		134		
5	Applications of Cellulose Nanocrystals					
	5.1	Prelude		138		
	5.2	The Reinforcing Potential of CNCs in Polymer				
		Nanocomposites				
		5.2.1	Basic Concepts in Composites	140		
		5.2.2	Generic Methods for Surface Functionalization	142		
		5.2.3		147		
		5.2.4	Performance of CNCs in Compatible Polymer Systems	150		
		5.2.5	Nanocomposites Prepared by Postpolymerization			
			Compounding of CNCs and Thermoplastic Polymers	154		
		5.2.6	Controlling Nanocomposite Crystallinity and			
			Plasticity via In Situ Polymerization Methodologies			
			in the Presence of CNCs	165		
		5.2.7	CNCs in Thermosetting Polymers: Tailoring			
			Cross-Linking Density and Toughness	172		
		5.2.8	Comments on Modeling the Mechanical Response			
			of CNC-Reinforced Nanocomposites	177		
		5.2.9	Conclusions and Critical Insights	181		
	5.3	CNC-	Stabilized Emulsions, Gels, and Hydrogels	184		
		5.3.1	Pickering Emulsions	184		
		5.3.2	High Internal Phase Emulsions	187		
		5.3.3	pH-Responsive Gels and Flocculants	189		
		5.3.4	Hydrogels	190		
	5.4	Contr	olled Self-Assembly of Functional Cellulosic Materials	194		
		5.4.1	Flexible CNC Films with Tunable Optical Properties	194		
		5.4.2	Mesoporous Photonic Cellulose Films	197		
	5.5	Towa	rd Bio-inspired Photonic and Electronic Materials	202		
		5.5.1	Mesoporous Photonic Materials from Cellulose			
			Nanomaterial Liquid Crystal Templates	202		
		5.5.2	Actuators and Sensors	217		
		5.5.3	Sustainable Electronics Based on CNCs	225		
		5.5.4	Conclusions and Outlook	232		
	5.6	CNCs	s in Biomedicine and Pharmaceuticals	233		
	5.7					
	5.8		ectives and Challenges	238		
	Not	-	-	239		

Epilogue—The Never-Ending Evolution of Scientific Insights	248
Bibliography	252
Subject Index	288