# TWO-DIMENSIONAL X-RAY DIFFRACTION

**BOB BAOPING HE** 

Second Edition



# **CONTENTS**

## Preface

#### 1. Introduction

1.4

- X-Ray Technology, a Brief History, 1 1.1
- 1.2 Geometry of Crystals, 2
  - Crystal Lattice and Symmetry, 2 1.2.1
  - Lattice Directions and Planes, 6 1.2.2
  - Atomic Arrangement in Crystal Structures, 7 1.2.3
  - 1.2.4 Imperfections in Crystal Structure, 10
- 1.3 Principles of X-Ray Diffraction, 11
  - Bragg's Law, 12 1.3.1
  - 1.3.2 Diffraction Patterns, 13
  - Reciprocal Space and Diffraction, 13
    - 1.4.1 Reciprocal Lattice, 14
    - 1.4.2 The Ewald Sphere, 16
    - Diffraction Cone and Diffraction Vector Cone, 18 1.4.3
- Two-Dimensional X-Ray Diffraction, 19 1.5
  - 1.5.1 Diffraction Pattern Measured by Area Detector, 19
  - 1.5.2 Materials Characterization with 2D Diffraction Pattern, 21
  - 1.5.3 Two-Dimensional X-Ray Diffraction System and Major Components, 23
  - 1.5.4 Summary, 24
  - References, 26

#### 2. **Geometry and Fundamentals**

2.1 Introduction, 29

Comparison Between XRD<sup>2</sup> and Conventional XRD, 30 2.1.1

2.2 Diffraction Space and Laboratory Coordinates, 31

v

1

- 2.2.1 Diffraction Cones in Laboratory Coordinates, 31
- 2.2.2 Diffraction Vector Cones in Laboratory Coordinates, 34
- 2.3 Detector Space and Detector Geometry, 35
  - 2.3.1 Ideal Detector for Diffraction Pattern in 3D Space, 35
  - 2.3.2 Diffraction Cones and Conic Sections with Flat 2D Detectors, 36
  - 2.3.3 Detector Position in the Laboratory System, 36
  - 2.3.4 Pixel Position in Diffraction Space Flat Detector, 38
  - 2.3.5 Pixel Position in Diffraction Space Flat Detector Out of Diffractometer Plane, 40
  - 2.3.6 Pixel Position in Diffraction Space Cylindrical Detector, 43
- 2.4 Sample Space and Goniometer Geometry, 46
  - 2.4.1 Sample Rotations and Translations in Eulerian Geometry, 46
  - 2.4.2 Variation of Goniometer Geometry, 48
- 2.5 Transformation from Diffraction Space to Sample Space, 50
- 2.6 Reciprocal Space, 52
- 2.7 Summary, 53
  - References, 55

#### 3. X-Ray Source and Optics

- 3.1 X-Ray Generation and Characteristics, 57
  - 3.1.1 X-Ray Spectrum and Characteristic Lines, 57
  - 3.1.2 Focal Spot and Takeoff Angle, 58
  - 3.1.3 Focal Spot Brightness and Profile, 59
  - 3.1.4 Absorption and Fluorescence, 61
  - 3.1.5 Synchrotron Radiation, 62
- 3.2 X-Ray Optics, 63
  - 3.2.1 Liouville's Theorem and Fundamentals, 63
  - 3.2.2 X-Ray Optics in Conventional Diffractometer, 65
  - 3.2.3 X-Ray Optics in a Two-Dimensional Diffractometer, 68
  - 3.2.4 The  $\beta$ -Filter, 71
  - 3.2.5 Crystal Monochromator, 73
  - 3.2.6 Multilayer Mirrors, 75
  - 3.2.7 Pinhole Collimator, 80
  - 3.2.8 Capillary Optics, 82
  - References, 85

### 4. X-Ray Detectors

- 4.1 History of X-Ray Detection Technology, 87
- 4.2 Point Detectors in Conventional Diffractometers, 89
  - 4.2.1 Proportional Counters, 90
  - 4.2.2 Scintillation Counters, 91
  - 4.2.3 Solid State Detectors, 91
- 4.3 Characteristics of Point Detectors, 92
  - 4.3.1 Counting Statistics, 92
  - 4.3.2 Detective Quantum Efficiency and Energy Range, 94
  - 4.3.3 Detector Linearity and Maximum Count Rate, 95
  - 4.3.4 Energy Resolution, 97

- 4.3.5 Detection Limit and Dynamic Range, 99
- 4.4 Line Detectors, 100
  - 4.4.1 Geometry of Line Detectors, 100
  - 4.4.2 Types of Line Detectors, 103
  - 4.4.3 Characteristics of Line Detectors, 104
- 4.5 Characteristics of Area Detectors, 107
  - 4.5.1 Active Area and Angular Coverage, 107
  - 4.5.2 Weight and Dimension, 111
  - 4.5.3 Angular Coverage of Pixels, 112
  - 4.5.4 Spatial Resolution of Area Detectors, 114
  - 4.5.5 Pixel Number and Angular Resolution, 116
  - 4.5.6 Angular Resolution of a 2D Diffractometer, 117
- 4.6 Types of Area Detectors, 119
  - 4.6.1 Multiwire Proportional Counter, 119
  - 4.6.2 Image Plate, 121
  - 4.6.3 CCD Detector, 122
  - 4.6.4 CMOS Detector, 125
  - 4.6.5 Pixel Array Detector, 126
  - 4.6.6 CPAD Detector, 129
  - 4.6.7 Microgap Detector, 130
  - 4.6.8 Comparison of Area Detectors, 135 References, 137

#### 5. Goniometer and Sample Stages

- 5.1 Goniometer and Sample Position, 141
  - 5.1.1 Introduction, 141
  - 5.1.2 Two-Circle Base Goniometer, 141
  - 5.1.3 Sample Stages, 142
  - 5.1.4 Sequence of the Goniometer Axes, 144
- 5.2 Goniometer Accuracy, 145
  - 5.2.1 Sphere of Confusion, 145
  - 5.2.2 Angular Accuracy and Precision, 148
- 5.3 Sample Alignment and Visualization Systems, 149
- 5.4 Environment Stages, 151
  - 5.4.1 Domed High Temperature Stage, 151
  - 5.4.2 Temperature Stage Calibration, 153

References, 155

#### 6. Data Treatment

- 6.1 Introduction, 157
- 6.2 Non-Uniform Response Correction, 157
  - 6.2.1 Calibration Source, 158
  - 6.2.2 Non-Uniform Response Correction Algorithms, 159
- 6.3 Spatial Correction, 161
  - 6.3.1 Fiducial Plate and Detector Plane, 162
  - 6.3.2 Spatial Correction Algorithms, 163
- 6.4 Detector Position Accuracy and Calibration, 166

- 6.4.1 Detector Position Tolerance, 168
- 6.4.2 Detector Position Calibration, 169
- 6.4.3 Detector Roll Calibration with Diffraction Rings, 171
- 6.4.4 Intersection Between Diffraction Cones, 171
- 6.5 Frame Integration, 177
  - 6.5.1 Definition of Frame Integration, 177
  - 6.5.2 Algorithm of Frame Integration Flat Image, 180
  - 6.5.3 Algorithm of Frame Integration Cylindrical Image, 185
- 6.6 Multiple Frame Merge, 186
  - 6.6.1 Merging Multiple Frames, 186
  - 6.6.2 Cylinder Projection of Flat 2D Frames, 187
  - 6.6.3 Merging of the Overlapping Region, 191
- 6.7 Scanning 2D Pattern, 194
- 6.8 Lorentz, Polarization, and Absorption Corrections, 197
  - 6.8.1 Lorentz, 197
  - 6.8.2 Polarization, 197
  - 6.8.3 Air Scatter and Be-Window Absorption, 201
  - 6.8.4 Sample Absorption, 203
  - 6.8.5 Combined Intensity Correction, 207
  - References, 209

#### 7. Phase Identification

- 7.1 Introduction, 211
- 7.2 Relative Intensity, 212
  - 7.2.1 Multiplicity Factor, 213
  - 7.2.2 Electron and Atomic Scattering, 214
  - 7.2.3 Structure Factor, 215
  - 7.2.4 Attenuation Factors, 216
- 7.3 Geometry and Resolution, 216
  - 7.3.1 Detector Distance and Resolution, 217
  - 7.3.2 Defocusing Effect, 218
  - 7.3.3 Transmission Mode Diffraction, 220
- 7.4 Sampling Statistics, 221
  - 7.4.1 Effective Sampling Volume, 222
  - 7.4.2 Angular Window, 223
  - 7.4.3 Virtual Oscillation, 224
  - 7.4.4 Sample Oscillation, 225
- 7.5 Preferred Orientation Effect, 227
  - 7.5.1 Relative Intensity with Texture, 227
  - 7.5.2 Intensity Correction on Fiber Texture, 229 References, 233
- 8. Texture Analysis
  - 8.1 Introduction, 235
  - 8.2 Pole Density and Pole-Figure, 236
  - 8.3 Fundamental Equations, 238
    - 8.3.1 Pole-figure Angles, 238

#### 211

- 8.3.2 Pole Density, 240
- 8.4 Data Collection Strategy, 242
  - 8.4.1 Single  $\varphi$  Scan, 242
  - 8.4.2 Multiple  $\phi$  Scans, 243
  - 8.4.3 Combination of  $\varphi$  and  $\omega$  Scans, 246
  - 8.4.4 Goniometer  $\phi$  Rotation Direction, 247
  - 8.4.5 Transmission Mode, 248
  - 8.4.6 Comparison with Point Detector, 250
- 8.5 Texture Data Process, 251
  - 8.5.1  $2\theta$  Integration, 251
  - 8.5.2 Absorption Correction, 255
  - 8.5.3 Pole-Figure Interpolation, 255
  - 8.5.4 Pole-Figure Symmetry, 256
  - 8.5.5 Pole-Figure Normalization, 256
- 8.6 Orientation Distribution Function, 256
  - 8.6.1 Eulerian Angles and Space, 256
  - 8.6.2 ODF Calculation, 258
  - 8.6.3 Calculated Pole-Figures from ODF, 259
- 8.7 Fiber Texture, 260
  - 8.7.1 Pole-Figures of Fiber Texture, 262
  - 8.7.2 ODF of Fiber Texture, 262
- 8.8 Polymer Texture, 264
  - 8.8.1 Data Collection Strategy for Polymers, 264
  - 8.8.2 Pole-Figure from Polymer Film, 265
- 8.9 Other Advantages of XRD<sup>2</sup> for Texture, 268
  - 8.9.1 Orientation Relationship, 268
  - 8.9.2 Direct Observation of Texture, 268
  - References, 269

### 9. Stress Measurement

- 9.1 Introduction, 271
  - 9.1.1 Stress, 272
  - 9.1.2 Strain, 276
  - 9.1.3 Elasticity and Hooke's Law, 277
  - 9.1.4 X-Ray Elasticity Constants and Anisotropy Factor, 278
  - 9.1.5 Residual Stresses, 279
- 9.2 Principle of X-ray Stress Analysis, 280
  - 9.2.1 Strain and Bragg's Law, 280
  - 9.2.2 Strain Measurement, 282
  - 9.2.3 Stress Measurement, 283
  - 9.2.4 Stress Measurement Without  $d_o$ , 286
  - 9.2.5  $\psi$ -Tilt and Goniometer, 288
  - 9.2.6  $\sin^2 \psi$  Method with Area Detector, 291
- 9.3 Theory of Stress Analysis with  $XRD^2$ , 292
  - 9.3.1 2D Fundamental Equation for Stress Measurement, 292
  - 9.3.2 Relationship Between Conventional Theory and 2D Theory, 295
  - 9.3.3 2D Equations for Various Stress States, 298
  - 9.3.4 True Stress-Free Lattice d-Spacing, 300

- 9.3.5 Diffraction Cone Distortion Simulation, 302
- 9.3.6 Goniometer  $\phi$  Rotation Direction, 306
- 9.4 Process of Stress Measurement with XRD<sup>2</sup>, 307
  - 9.4.1 Instrument Requirements and Configurations, 308
  - 9.4.2 Data Collection Strategy, 309
  - 9.4.3 Data Integration and Peak Evaluation, 313
  - 9.4.4 Stress Calculation, 316
  - 9.4.5 Effect of Texture and Large Grain, 318
  - 9.4.6 Intensity Weighted Least Squares Regression, 318
  - 9.4.7 Stress-Free Sample and Standard Sample, 320
  - 9.4.8 Dynamic Sample Height Alignment, 321
  - 9.4.9 Correction with Stress-Free Sample, 322
  - 9.4.10 Correction with Stress Standard, 324
- 9.5 Experimental Examples, 325
  - 9.5.1 Comparison Between 2D Method and Conventional Method, 325
  - 9.5.2 Sample Oscillation and Virtual Oscillation, 327
  - 9.5.3 Stress Mapping on Weldment, 329
  - 9.5.4 Residual Stresses in Thin Films, 332
  - 9.5.5 Residual Stress Measurement with Multiple {hkl} Rings, 335
  - 9.5.6 Single Tilt Method, 340
  - 9.5.7 Gage Repeatability and Reproducibility Study, 347
- A9.1 Calculation of Principal Stresses from the General Stress Tensor, 349 A9.1.1 Calculate Principal Stresses, 349
  - A9.1.2 Calculate the direction cosines for principal stresses (Eigenvectors), 350
- A9.2 Parameters for Stress Measurement, 351 References, 353

### 10. Small Angle X-ray Scattering

- 10.1 Introduction, 357
  - 10.1.1 Principle of Small Angle Scattering, 357
  - 10.1.2 General Equation and Parameters in SAXS, 358
  - 10.1.3 X-Ray Source and Optics for SAXS, 359
- 10.2 2D SAXS Systems, 361
  - 10.2.1 SAXS Attachments, 361
  - 10.2.2 Dedicated SAXS System, 364
  - 10.2.3 Detector Correction and System Calibration, 365
  - 10.2.4 Data Collection and Integration, 366
- 10.3 Applications Examples, 367
  - 10.3.1 Particles in Solutions, 367
  - 10.3.2 Scanning SAXS and Transmission Measurement, 367
- 10.4 Some Innovations in 2D SAXS, 370
  - 10.4.1 Simultaneous Measurements of Transmission and SAXS, 37010.4.2 Vertical SAXS System, 372References, 374

| 11. | Comb  | Combinatorial Screening                                                                                                                                                                                                              |  |  |
|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|     | 11.1  | Introduction, 379<br>11.1.1 Combinatorial Chemistry, 379                                                                                                                                                                             |  |  |
|     | 11.2  | <ul> <li>XRD<sup>2</sup> Systems for High Throughput Screening, 380</li> <li>Screening in Reflection Geometry, 380</li> <li>Retractable Knife-Edge, 383</li> </ul>                                                                   |  |  |
|     | 11.3  | Combined Screening in Transmission Geometry, 386<br>References, 393                                                                                                                                                                  |  |  |
| 12. | Misce | llaneous Applications                                                                                                                                                                                                                |  |  |
|     | 12.1  | Percent Crystallinity, 395<br>12.1.1 Introduction, 395<br>12.1.2 Comparison of Conventional XRD and XRD <sup>2</sup> , 397<br>12.1.3 Scatter Correction, 397<br>12.1.4 Internal and External Methods, 398<br>12.1.5 Full Method, 400 |  |  |
|     | 12.2  | Crystal Size, 402<br>12.2.1 Introduction, 402<br>12.2.2 Line Broadening for Crystallite Size, 402<br>12.2.3 Crystallite Size Using $\gamma$ -Profile Analysis, 404                                                                   |  |  |
|     | 12.3  | Retained Austenite, 412                                                                                                                                                                                                              |  |  |
|     | 12.4  | Crystal Orientation, 414<br>12.4.1 Orientation with Respect to Sample, 414<br>12.4.2 Angle Between Two Crystal Planes, 416<br>12.4.3 Miscut Angle of Single Crystal Wafer, 416                                                       |  |  |
|     | 12.5  | Thin Film Analysis, 418<br>12.5.1 Grazing Incidence X-Ray Diffraction, 418<br>12.5.2 Reflectometry with 2D Detector, 423<br>12.5.3 Reciprocal Space Mapping, 424<br>References, 429                                                  |  |  |
| 13. | Innov | ation and Future Development                                                                                                                                                                                                         |  |  |
|     | 13.1  | Introduction, 433                                                                                                                                                                                                                    |  |  |
|     | 13.2  | Scanning Line Detector for XRD <sup>2</sup> , 434<br>13.2.1 Working Principle, 434<br>13.2.2 Advantages of Scanning Line Detector. 436                                                                                               |  |  |
|     | 13.3  | Three-Dimensional Detector, 438<br>13.3.1 Third Dimension of a Detector, 438<br>13.3.2 Geometry of Three-Dimensional Detector, 438<br>13.3.3 Three-Dimensional Detector and Reciprocal Space, 440                                    |  |  |
|     |       |                                                                                                                                                                                                                                      |  |  |

13.4 Pixel Direct Diffraction Analysis, 441

|          | 13.4.1 Concept, 441                                       |     |
|----------|-----------------------------------------------------------|-----|
|          | 13.4.2 Pixel Diffraction Vector and Pixel Count, 442      |     |
|          | 13.4.3 PDD Analysis in Phase-ID, Texture, and Stress, 442 |     |
| 13.5     | High Resolution Two-Dimensional X-Ray Diffractometer, 444 |     |
|          | 13.5.1 Background, 444                                    |     |
|          | 13.5.2 HRXRD <sup>2</sup> in Reciprocal Space, 445        |     |
|          | 13.5.3 New Configuration for HRXRD <sup>2</sup> , 447     |     |
|          | References, 451                                           |     |
| Appendix | A. Values of Commonly Used Parameters                     | 453 |
| Appendix | B. Symbols                                                | 459 |
| Index    |                                                           | 465 |