IONS IN SOLUTION AND THEIR SOLVATION

Yizhak Marcus

Hebrew University of Jerusalem

CONTENTS

Preface					ix
1	Introduction				1
	1.1 1.2				
2	Ions and Their Properties				10
	2.1 Ions as Isolated Particles, 10				
			Bare Ior		
		2.1.2	Ions in (Clusters, 26	
	2.2	Sizes of Ions, 30			
	2.3	Ions in Solution, 35			
		2.3.1	Thermo	dynamics of Ions in Aqueous Solutions, 38	
			2.3.1.1	Heat Capacities of Aqueous Ions, 38	
			2.3.1.2	Entropies of Aqueous Ions, 39	
			2.3.1.3	Enthalpies of Formation of Aqueous Ions, 43	
			2.3.1.4	Gibbs Energies of Formation of Aqueous Ions, 44	
			2.3.1.5	Ionic Molar Volumes in Aqueous Solutions, 44	
	2.3.2 Other Properties of Aqueous Ions, 49		operties of Aqueous Ions, 49		
			2.3.2.1	Ionic Conductivities in Aqueous Solutions, 49	
			2.3.2.2	Ionic Self-Diffusion in Aqueous Solutions, 50	
			2.3.2.3	Ionic Effects on the Viscosity, 51	
			2.3.2.4	Ionic Effects on the Relaxation of NMR Signals, 55	
			2.3.2.5	Ionic Dielectric Decrements, 55	
			2.3.2.6	Ionic Effects on the Surface Tension, 56	
	Refe	rences,	58		

63

3 Solvents for Ions

- 3.1 Solvent Properties that Suit Ion Dissolution, 63
- 3.2 Physical Properties of Solvents, 64
 - 3.2.1 Volumetric Properties, 64
 - 3.2.2 Thermodynamic Properties, 69
 - 3.2.3 Electrical, Optical, and Magnetic Properties, 70
 - 3.2.4 Transport Properties, 75
- 3.3 Chemical Properties of Solvents, 77
 - 3.3.1 Structuredness, 77
 - 3.3.2 Solvent Properties Related to Their Ion Solvating Ability, 80
 - 3.3.2.1 Polarity, 81
 - 3.3.2.2 Electron Pair Donicity and Ability to Accept a Hydrogen Bond, 83
 - 3.3.2.3 Hydrogen Bond Donicity and Electron Pair Acceptance, 84
 - 3.3.2.4 Softness, 85
 - 3.3.3 Solvents as Acids and Bases, 86
 - 3.3.4 Miscibility with and Solubility in Water, 88
 - 3.3.5 Spectroscopic and Electrochemical Windows, 90
- 3.4 Properties of Binary Aqueous Cosolvent Mixtures, 90
 - 3.4.1 Physical Properties of Binary Aqueous Mixtures with Cosolvents, 90
 - 3.4.1.1 Thermodynamic Properties of the Mixtures, 92
 - 3.4.1.2 Some Electrical, Optical, and Transport Properties of the Mixtures, 98
 - 3.4.2 Chemical Properties of Binary Aqueous Mixtures with Cosolvents, 98
 - 3.4.2.1 Structuredness, 98
 - 3.4.2.2 Properties Related to the Ion Solvating Ability, 101

References, 104

4 Ion Solvation in Neat Solvents

- 4.1 The Solvation Process, 107
- 4.2 Thermodynamics of Ion Hydration, 109
 - 4.2.1 Gibbs Energies of Ion Hydration, 109
 - 4.2.1.1 Accommodation of the Ion in a Cavity, 110
 - 4.2.1.2 Electrostatic Interactions, 110
 - 4.2.2 Entropies of Ion Hydration, 116
 - 4.2.3 Enthalpies of Ion Hydration, 116
- 4.3 Transfer Thermodynamics into Nonaqueous Solvents, 117
 - 4.3.1 Selection of an Extra-Thermodynamic Assumption, 117
 - 4.3.2 Thermodynamics of Transfer of Ions into Nonaqueous Solvents, 118
 - 4.3.2.1 Gibbs Energies of Transfer, 118
 - 4.3.2.2 Enthalpies of Transfer, 126
 - 4.3.2.3 Entropies of Transfer, 130

- 4.3.2.4 Ionic Heat Capacities in Nonaqueous Solvents, 130
- 4.3.2.5 Ionic Volumes in Nonaqueous Solvents, 133
- 4.4 The Structure of Solvated Ions, 135
 - 4.4.1 Hydration Numbers from Diffraction Studies, 138
 - 4.4.2 Hydration Numbers from Computer Simulations, 139
 - 4.4.3 Hydration Numbers from Bulk Properties, 141
 - 4.4.4 Solvation Numbers in Nonaqueous Solvents, 147
- 4.5 The Dynamics of Solvated Ions, 147
 - 4.5.1 The Mobility of Ions in Solution, 147
 - 4.5.2 Rate of Solvent Exchange Near Ions, 150
- 4.6 Acid/Base Properties of Ions in Solution, 151

References, 153

5 Mutual Effects of Ions and Solvents

- 5.1 Ion Effects on the Structure of Solvents, 156
 - 5.1.1 Experimental Studies of Ion Effects on the Structure of Solvents, 156
 - 5.1.1.1 Self-diffusion of Water Molecules, 156
 - 5.1.1.2 Viscosity B-Coefficients, 157
 - 5.1.1.3 NMR Signal Relaxation, 159
 - 5.1.1.4 Dielectric Relaxation, 159
 - 5.1.1.5 Vibrational Spectroscopy, 160
 - 5.1.1.6 X-Ray Absorption and Scattering, 162
 - 5.1.1.7 Structural Entropy, 163
 - 5.1.1.8 Transfer from Light to Heavy Water, 165
 - 5.1.1.9 Internal Pressure, 168
 - 5.1.1.10 Some Other Experimental Results, 170
 - 5.1.2 Computer Simulations of Ion Effects on the Structure of Solvents, 170
- 5.2 Ion Effects on the Dynamics of the Solvent, 171
 - 5.2.1 Mean Residence Times of Solvent Molecules Near Ions, 171
 - 5.2.2 Experimental Studies of Ion Effects on the Solvent Orientation Dynamics, 174
 - 5.2.2.1 Ultrafast Infrared Spectroscopy, 174
 - 5.2.2.2 High-frequency Dielectric Relaxation Spectroscopy, 176
 - 5.2.2.3 NMR Relaxation Times, 178
 - 5.2.3 Computer Simulations of Reorientation Times, 180
- 5.3 Solvent Effects on the Properties of Ions in Solution, 180
 - 5.3.1 Bulk Properties, 180
 - 5.3.2 Molecular Properties, 186

References, 187

6 Ions in Mixed Solvents

- 6.1 Ion Transfer into Solvent Mixtures, 194
- 6.2 Properties of Ions in Solvent Mixtures, 199
 - 6.2.1 Thermodynamic Properties of Ions in Mixed Solvents, 199
 - 6.2.2 Transport Properties of Ions in Mixed Solvents, 203

6.3 Preferential Solvation of Ions, 205

- 6.3.1 Spectroscopic Studies, 207
- 6.3.2 Results from Thermodynamic Data, 210
 - 6.3.2.1 The QLQC Method, 211
 - 6.3.2.2 The IKBI Method, 213
 - 6.3.2.3 Treatments Based on Stepwise Solvent
 - Replacements, 215

References, 216

7 Interactions of Ions with Other Solutes

- 7.1 Ion–Ion Interactions, 219
 - 7.1.1 Activity Coefficients of Electrolyte Solutions, 220
 - 7.1.2 Ion Hydration Related to Ion-Ion Interactions, 223
- 7.2 Ion Association, 227
 - 7.2.1 Electrostatic Theory of Ion Association, 230
 - 7.2.1.1 Activity Coefficients of Neutral Ion Pairs, 231
 - 7.2.2 Methods for Studying Ion Association, 232
 - 7.2.3 Thermodynamic Quantities Pertaining to Ion Association, 234
 - 7.2.4 Aggregation of Ions in Solutions, 237
- 7.3 Salting-in and Salting-out, 239
 - 7.3.1 Empirical Setschenow Constant Data, 240
 - 7.3.2 Interpretation of Salting Phenomena, 240

References, 244

8 Applications of Solutions of Ions

- 8.1 Applications in Electrochemistry, 248
 - 8.1.1 Batteries and Supercapacitors, 248
 - 8.1.2 Solvent-Independent pH and Electrode Potential Scales, 251
- 8.2 Applications in Hydrometallurgy, 257
- 8.3 Applications in Separation Chemistry, 259
 - 8.3.1 Solvent Extraction of Alkali Metal Cations, 259
 - 8.3.2 Solvation of Ionizable Drug Molecules, 262
- 8.4 Applications to Chemical Reaction Rates, 264
- 8.5 Solvated Ions in Biophysical Chemistry, 269
 - 8.5.1 The Hofmeister Series, 270
 - 8.5.1.1 The Anion Hofmeister Series, 270
 - 8.5.1.2 The Cation Hofmeister Series, 271
 - 8.5.1.3 Interpretation of the Hofmeister Series, 272
 - 8.5.2 Water Structure Effects of Ions, 275
 - 8.5.3 Some Aspects of Protein Hydration, 277

References, 279

Author Index Subject Index 284 294

219

247