

GREEN BIOCATALYSIS

Edited by
Ramesh N. Patel

WILEY

Contents

Preface xix

About the Editor xxiii

Contributors xxv

Chapter 1 Biocatalysis and Green Chemistry	1
<i>Roger A. Sheldon</i>	
1.1 Introduction to Sustainable Development and Green Chemistry	1
1.2 Green Chemistry Metrics	2
1.3 Environmental Impact and Sustainability Metrics	4
1.4 Solvents	5
1.5 The Role of Catalysis	6
1.6 Biocatalysis and Green Chemistry	6
1.7 Examples of Green Biocatalytic Processes	8
1.7.1 A Chemoenzymatic Process for Pregabalin	8
1.7.2 A Three-Enzyme Process for Atorvastatin Intermediate	8
1.7.3 Enzymatic Synthesis of Sitagliptin	11
1.7.4 Biocatalytic Synthesis of the Fragrance Chemical (–) Ambrox (Ambrafuran)	12
1.8 Conclusions and Future Prospects	13
References	13
Chapter 2 Enzymatic Synthesis of Chiral Amines using ω-Transaminases, Amine Oxidases, and the Berberine Bridge Enzyme	17
<i>Eduardo Busto, Robert C. Simon, Nina Richter, and Wolfgang Kroutil</i>	
2.1 Introduction	17
2.2 Synthesis of Chiral Amines using ω -Transaminases	18
2.2.1 ω -Transaminases: Definition and General Facts	18
2.2.2 Stereoselective Transformations Involving ω -TAs	18
2.2.3 Asymmetric Amination of Ketones	19
2.2.4 Asymmetric Amination of Linear Ketones	20
2.2.5 Asymmetric Amination of Cyclic Ketones	21
2.2.6 Application in the Synthesis of Pharmaceutically Active Ingredients	22
2.2.7 Amination of Ketones in Organic Solvents	24
2.2.8 Asymmetric Amination of Keto Acids: Synthesis of Nonnatural Amino Acids	25
2.2.9 Amination of Aldehydes	26

2.2.10	Cascade Reactions Involving ω -TAs	27
2.2.11	Cascades Initiated by ω -TAs: Synthesis of Chiral Heterocycles	27
2.2.12	Multienzyme Cascades Involving ω -TA-Catalyzed Amination of Ketones	30
2.2.13	Deracemization of Primary Amines	32
2.2.14	Perspective	34
2.3	Amine Oxidases	34
2.3.1	Amino Acid Oxidases	35
2.3.2	Cascade Reactions Involving AAOs	38
2.3.3	Monoamine Oxidases	41
2.3.4	Cascade Reactions Involving Monoamine Oxidases	47
2.3.5	Perspective	49
2.4	Berberine Bridge Enzymes	50
2.5	Conclusions	52
	References	53

Chapter 3 | Decarboxylation and Racemization of Unnatural Compounds using Artificial Enzymes Derived from Arylmalonate Decarboxylase

59

Kenji Miyamoto

3.1	Introduction	59
3.2	Discovery of a Bacterial α-Aryl-α-Methylmalonate Decarboxylase	61
3.3	Purification and Characterization of the Decarboxylase (AMDase)	61
3.4	Cloning of the AMDase Gene	62
3.5	Stereochemical Course of AMDase-Catalyzed Decarboxylation	62
3.6	Directed Evolution of AMDase to an Artificial Profen Racemase	63
3.7	Inversion of Enantioselectivity Dramatically Improves Catalytic Activity	65
3.8	Future Prospects	68
	References	69

Chapter 4 | Green Processes for the Synthesis of Chiral Intermediates for the Development of Drugs

71

Ramesh N. Patel

4.1	Introduction	71
4.2	Saxagliptin: Enzymatic Synthesis of (S)-N-Boc-3-Hydroxyadamantylglycine	71
4.3	Sitagliptin: Enzymatic Synthesis of Chiral Amine	72
4.4	Vanlev: Enzymatic Synthesis of (S)-6-Hydroxynorleucine	73
4.5	Vanlev: Enzymatic Synthesis of Allysine Ethylene Acetal	74
4.6	Vanlev: Enzymatic Synthesis of Thiazepine	74
4.7	Tigemonam: Enzymatic Synthesis of (S)-β-Hydroxyvaline	76
4.8	Autoimmune Diseases: Enzymatic Synthesis of (S)-Neopentylglycine	76
4.9	Atazanavir: Enzymatic Synthesis of (S)-Tertiary Leucine	77
4.10	Thrombin Inhibitor (Inogatran): Synthesis of (R)-Cyclohexylalanine	78
4.11	Gamma Secretase Inhibitor: Enzymatic Synthesis of (R)-5,5,5-Trifluoronorvaline	79
4.12	NK1/NK2 Dual Antagonists: Enzymatic Desymmetrization of Diethyl 3-[3',4'-Dichlorophenyl] Glutarate	80
4.13	Pregabalin: Enzymatic Synthesis of Ethyl (S)-3-Cyano-5-Methylhexanoate	81
4.14	Chemokine Receptor Modulator: Enzymatic Synthesis of (1S,2R)-2-(Methoxycarbonyl)-Cyclohex-4-ene-1-Carboxylic Acid	82

4.15	Enzymatic Synthesis of (3S,5R)-3-(Aminomethyl)-5-Methyloctanoic Acid	82
4.16	Atorvastatin (Lipitor): Enzymatic Desymmetrization of 3-Hydroxyglutaronitrile	83
4.17	Anticancer Drugs: Enzymatic Synthesis of Taxane Side Chain	84
4.18	Antidiabetic and CNS Drugs: Enzymatic Hydrolysis of Dimethyl Bicyclo[2.2.1]Heptane-1,4-Dicarboxylate	85
4.19	Clopidogrel (Plavix): Enzymatic Preparation of 2-Chloromandelic Acid Esters	85
4.20	Antiviral Drug: Regioselective Enzymatic Acylation of Ribavirin	86
4.21	Anticholesterol Drug: Enzymatic Acylation of Alcohol	87
4.22	Saxagliptin: Enzymatic Synthesis of (5S)-4,5-Dihydro-1 <i>H</i> -Pyrrole-1,5-Dicarboxylic Acid, 1-(1,1-Dimethylethyl)-5-Ethyl Ester	88
4.23	Montelukast: Synthesis of Intermediate for LTD4 Antagonists	89
4.24	Atazanavir: Enzymatic Synthesis of (1 <i>S</i> ,2 <i>R</i>)-[3-Chloro-2-Hydroxy-1 (Phenylmethyl)Propyl]-Carbamic Acid,1,1-Dimethyl-Ethyl Ester	90
4.25	Atorvastatin: Enzymatic Synthesis of (<i>R</i>)-4-Cyano-3-Hydroxybutyrate	91
4.26	Antianxiety Drug: Enzymatic Synthesis of 6-Hydroxybuspirone	92
4.27	Protease Inhibitor: Enzymatic Synthesis of (<i>R</i>)-3-(4-Fluorophenyl)-2-Hydroxy Propionic Acid	93
4.28	Dermatological and Anticancer Drugs: Enzymatic Synthesis of 2-(<i>R</i>)-Hydroxy-2-(1',2',3',4'-Tetrahydro-1',1',4',4'-Tetramethyl-6'-Naphthalenyl) Acetate	94
4.29	Antipsychotic Drug: Enzymatic Reduction of 1-(4-Fluorophenyl)-4-[4-(5-Fluoro-2-Pyrimidinyl)1-Piperazinyl]-1-Butanone	95
4.30	Cholesterol-Lowering Agents: Enzymatic Synthesis of (3 <i>S</i> ,5 <i>R</i>)-Dihydroxy-6-(Benzylxy) Hexanoic Acid, Ethyl Ester	95
4.31	Antimigraine Drugs: Enzymatic Synthesis of (<i>R</i>)-2-Amino-3-(7-Methyl-1 <i>H</i> -Indazol-5-yl) Propanoic Acid	96
4.32	Antidiabetic Drug (GLP-1 Mimics): Enzymatic Synthesis of (<i>S</i>)-Amino-3-[3-{6-(2-Methylphenyl)} Pyridyl]-Propionic Acid	97
4.33	Ephedrine: Synthesis of (<i>R</i>)-Phenylacetylcarbinol	98
4.34	Zanamivir: Enzymatic Synthesis of <i>N</i> -Acetylneurameric Acid	99
4.35	Epivir: Enzymatic Deamination Process for the Synthesis of (2'R- <i>cis</i>)-2'-Deoxy-3-Thiacytidine	100
4.36	HMG-CoA Reductase Inhibitors: Aldolase-Catalyzed Synthesis of Chiral Lactol	101
4.37	Boceprevir: Oxidation of 6,6-Dimethyl-3-Azabicyclo[3.1.0]Hexane by Monoamine Oxidase	102
4.38	Crixivan: Enzymatic Synthesis of Indandiols	103
4.39	Potassium Channel Opener: Preparation of Chiral Epoxide and <i>trans</i> -Diol	104
4.40	Epothilones (Anticancer Drugs): Epothilone B and Epothilone F	105
4.41	β -Adrenergic Blocking Agents: Synthesis of Intermediates for Propranolol and Denopamine	106
4.42	Conclusion	106
	References	107

Chapter 5 <i>Dynamic Kinetic Resolution of Alcohols, Amines, and Amino Acids</i>	115
Jusuk Lee, Yoon Kyung Choi, Jaiwook Park, and Mahn-Joo Kim	

5.1	Introduction	115
5.1.1	Kinetic and Dynamic Kinetic Resolution	115
5.1.2	Enzymes as the Resolution Catalysts for DKR	115
5.1.3	The Enantioselectivity of Enzymes in DKR	116
5.1.4	Metal (Complexes) as the Racemization Catalysts for DKR	117
5.2	Dynamic Kinetic Resolution of Secondary Alcohols	119
5.3	Dynamic Kinetic Resolution of Amines and Amino Acids	133
5.4	Applications of Dynamic Kinetic Resolution	139
5.5	Summary	145
	Appendix: List of Abbreviations	145
	References	146

Chapter 6 <i>Recent Developments in Flavin-Based Catalysis: Enzymatic Sulfoxidation</i>	149
<i>Patricia B. Brondani, Marco W. Fraaije, and Gonzalo de Gonzalo</i>	
6.1 Introduction	149
6.2 Enzymatic Sulfoxidation Catalyzed by Flavoprotein Oxidases	150
6.3 Use of Flavoprotein Monooxygenases for the Synthesis of Chiral Sulfoxides	151
6.3.1 Sulfoxidations Catalyzed by Baeyer–Villiger Monooxygenases	152
6.3.2 Oxidative Processes Employing Styrene Monooxygenases	159
6.3.3 Enzymatic Sulfoxidations Catalyzed by Flavin-Containing Monooxygenases	159
6.4 Asymmetric Sulfoxidation using Flavins as Catalysts	160
6.5 Summary and Outlook	162
References	163
Chapter 7 <i>Development of Chemoenzymatic Processes: An Industrial Perspective</i>	165
<i>Rajesh Kumar, Carlos Martinez, Van Martin, and John Wong</i>	
7.1 Introduction	165
7.2 Synthetic Route Design and Integration of Biocatalysis	166
7.3 Screening and Biocatalyst Selection	169
7.4 Chemoenzymatic Process Development	169
7.4.1 Reaction Engineering versus Enzyme Engineering	169
7.4.2 Product Isolation	171
7.4.3 Scale-Up of Enzymatic Processes	172
7.4.4 Enzyme Supply Scenarios	173
7.4.5 Manufacture of APIs using Enzymes: Quality and Safety Aspects	174
7.5 Conclusions	176
References	176
Chapter 8 <i>Epoxide Hydrolases and their Application in Organic Synthesis</i>	179
<i>Alain Archelas, Gilles Iacazio, and Michael Kotik</i>	
8.1 Introduction	179
8.2 Sources and Reaction Mechanism of EHs	181
8.2.1 Sources of EHs	181
8.2.2 Heterologous Expression of EHs	182
8.2.3 Reaction Mechanisms of EHs	182
8.3 Directed Evolution and Genetic Engineering of EHs	183
8.4 Immobilized EHs and Reactions in Nonaqueous Media	186
8.4.1 Immobilization of EHs	186
8.4.2 EH-Catalyzed Reactions in Organic Solvent- or Ionic Liquid-Containing Media	188
8.5 Monofunctional Epoxides as Chiral Building Blocks for the Synthesis of Biologically Active Compounds	188
8.5.1 Monosubstituted Aromatic Epoxides	189
8.5.2 Disubstituted Aromatic Epoxides	194
8.5.3 Nonaromatic Epoxides	197
8.5.4 <i>meso</i> -Epoxides	203
8.6 Preparation of Valuable Chiral Building Blocks for the Synthesis of Biologically Active Compounds Starting from Bifunctional Epoxides	204
8.6.1 Halogenated Epoxides	204
8.6.2 Epoxyamide	206
8.6.3 Protected Epoxy Alcohols	206

8.6.4	Epoxy Ester	208
8.6.5	Epoxy Aldehyde	208
8.7	Application to Natural Product Synthesis	210
8.7.1	Disparlure	210
8.7.2	Linalool	210
8.7.3	Bisabolol	211
8.7.4	Frontalin	211
8.7.5	Mevalonolactone	212
8.7.6	Myrcenediol and Beer Aroma	212
8.7.7	Pityol	213
8.7.8	Pestalotin: Jamaican Rum Constituent	214
8.7.9	Panaxytriol	214
8.7.10	Fridamycin E	215
8.8	Bienzymatic Process Implying One Epoxide Hydrolase	216
8.9	Conclusions	219
	References	220

Chapter 9	 Enantioselective Acylation of Alcohol and Amine Reactions in Organic Synthesis	231
	<i>Vicente Gotor-Fernández and Vicente Gotor</i>	
9.1	Introduction	231
9.1.1	General Considerations for Hydrolase-Catalyzed Reactions	231
9.1.2	Serine Hydrolase Mechanism for the Acylation of Alcohols and Amines	232
9.1.3	Use of Organic Solvents for Hydrolase-Catalyzed Acylation Reactions	233
9.2	Enantioselective Acylation of Alcohols	234
9.2.1	Classical Kinetic Resolution of Racemic Alcohols	235
9.2.2	Dynamic Kinetic Resolution of Racemic Alcohols	240
9.2.3	Desymmetrization of Diols	242
9.2.4	Selected Examples of Acylation Reaction with Interest for the Pharmaceutical Industry	243
9.3	Acylation of Amines	248
9.3.1	Kinetic Resolution of Racemic Amines	248
9.3.2	Dynamic Kinetic Resolution of Racemic Amines	252
9.3.3	Selected Examples of Acylation Reactions with Interest for the Pharmaceutical Industry	257
9.4	Conclusions	260
	References	260

Chapter 10	 Recent Advances in Enzyme-Catalyzed Aldol Addition Reactions	267
	<i>Pere Clapés</i>	
10.1	Introduction	267
10.2	Pyruvate-Dependent Aldolases	269
10.2.1	<i>N</i> -Acetylneurameric Acid Aldolase	270
10.2.2	Other Pyruvate-Dependent Aldolases	271
10.2.3	Structure-Guided Pyruvate Aldolase Modification	275
10.3	Dihydroxyacetone Phosphate (DHAP)-Dependent Aldolases, D-Fructose-6-Phosphate Aldolase (FSA) and Transaldolases	276
10.3.1	DHAP-Dependent Aldolases	276
10.3.2	Iminocyclitol, Pipecolic Acids, Homoinosaccharides, and Aminocyclitol Synthesis	278
10.3.3	Synthesis of Polyhydroxylated Pipecolic Acids and Homoinosaccharides	281
10.3.4	Aminocyclitol Synthesis	281

10.3.5	DHA-Utilizing Enzymes	281
10.3.6	Iminocyclitol, Pipecolic Acid, Homoiminocyclitols, and Aminocyclitol Synthesis	284
10.3.7	Carbohydrates, Deoxysugars, and Sugar Phosphate Synthesis	284
10.4	Threonine Aldolases	287
10.4.1	2-Deoxy-D-Ribose 5-Phosphate Aldolase	291
10.5	Aldol Type Reactions Catalyzed by Non-Aldolases	293
10.6	Computational De Novo Enzyme Design	294
10.7	Conclusions and Perspectives	295
	References	295

Chapter 11	 Enzymatic Asymmetric Reduction of Carbonyl Compounds	307
	<i>Tomoko Matsuda, Rio Yamanaka, and Kaoru Nakamura</i>	

11.1	Introduction	307
11.2	Mechanisms	307
11.3	Preparation of Biocatalysts	309
11.3.1	Screening of Enzymes from Culturable Microorganisms	309
11.3.2	Screening of Enzymes using Metagenomes	310
11.3.3	Screening of Enzymes of Microorganisms of Known Genome Data	310
11.3.4	Mutation of Enzymes	311
11.3.5	Hyperthermophilic Enzyme as a Biocatalyst	312
11.3.6	Photosynthetic Organism as a Biocatalyst "Photobiocatalyst"	312
11.4	Solvent Engineering	316
11.4.1	Organic Solvent	316
11.4.2	CO ₂	316
11.4.3	Ionic Liquid	317
11.5	Examples for Biocatalytic Asymmetric Reductions	317
11.5.1	Reduction of Ketones	317
11.5.2	Reduction of Diketones	322
11.5.3	Dynamic Kinetic Resolution Through Reduction	322
11.6	Conclusions	325
	References	326

Chapter 12	 Nitrile-Converting Enzymes and their Synthetic Applications	331
	<i>Ludmila Martíková</i>	

12.1	Introduction	331
12.2	Screening Methodology	332
12.2.1	Screening Metagenomic Libraries	332
12.2.2	Database Mining	332
12.2.3	Construction of Enzyme Variants	332
12.3	Nitrilases	333
12.3.1	Arylacetronitrilases	334
12.3.2	Aromatic Nitrilases	337
12.3.3	Aliphatic Nitrilases	338
12.3.4	Plant Nitrilases and their Bacterial Homologues	339
12.4	Nitrile Hydratases	340
12.4.1	Fe-type Nitrile Hydratase	340
12.4.2	Co-type Nitrile Hydratase	342
12.5	Conclusions	343
	Acknowledgements	343
	References	344

Chapter 13 <i>Biocatalytic Epoxidation for Green Synthesis</i>	351
<i>Hui Lin, Meng-Yu Xu, Yan Liu, and Zhong-Liu Wu</i>	
13.1 Introduction 351	
13.2 Enzymes for Asymmetric Epoxidation 352	
13.2.1 Monooxygenases 352	
13.2.2 Chloroperoxidases 354	
13.3 Application of Bioepoxidation in Organic Synthesis 354	
13.3.1 Asymmetric Epoxidation of Aliphatic Alkenes 354	
13.3.2 Asymmetric Epoxidation of Aromatic Alkenes 359	
13.4 Protein Engineering for Biocatalytic Epoxidation Reaction 362	
13.4.1 Screening Methods 363	
13.4.2 Examples of Engineered Enzymes for Biocatalytic Epoxidation Reactions 366	
13.5 Conclusions and Outlook 367	
Acknowledgments 368	
References 368	
Chapter 14 <i>Dynamic Kinetic Resolution via Hydrolase–Metal Combo Catalysis</i>	373
<i>Pilar Hoyos, Vittorio Pace, María J. Hernáiz, and Andrés R. Alcántara</i>	
14.1 Introduction 373	
14.2 DKR of Secondary Alcohols 374	
14.2.1 Racemization Catalysts for DKR of <i>sec</i> -Alcohols 374	
14.2.2 Synthetic Applications of the DKR of <i>sec</i> -Alcohols 377	
14.3 DKR of Amines 386	
14.3.1 Racemization Catalyst for the DKR of Amines 387	
14.3.2 Synthetic Applications of the DKR of Amines 388	
14.4 Conclusion 391	
References 391	
Chapter 15 <i>Discovery and Engineering of Enzymes for Peptide Synthesis and Activation</i>	397
<i>Ana Toplak, Muhammad I. Arif, Bian Wu, and Dick B. Janssen</i>	
15.1 Introduction 397	
15.2 Classification of Enzymes for Peptide Coupling 399	
15.3 Serine and Cysteine Proteases for Peptide Synthesis 402	
15.3.1 Chymotrypsin, Trypsin, and Related Enzymes 402	
15.3.2 Subtilisin-Like Enzymes 404	
15.3.3 Other Serine Hydrolases 405	
15.3.4 Aminopeptidases 405	
15.3.5 Peptidases Accepting β -Amino Acids 405	
15.3.6 α -Amino Acid-Specific Peptidases 405	
15.3.7 Sulfhydryl Peptidases 406	
15.3.8 Sortase 407	
15.3.9 Metalloproteases in Peptide Synthesis 407	
15.3.10 Aspartic Proteases in Peptide Synthesis 408	
15.4 Protease Discovery 409	
15.4.1 Metagenomics 409	
15.4.2 Proteases from Thermophiles 409	
15.4.3 Solvent-Tolerant Proteases 409	
15.4.4 Proteases from Salt-Resistant Organisms 410	
15.5 Proteases Engineered for Improved Synthesis 410	
15.5.1 Solvent-Resistant and Thermostable Subtilase Mutants 410	
15.5.2 Thermostable Thermolysin Variants 411	

15.5.3	Increasing Aminolysis to Hydrolysis Ratio by Protein Engineering	411
15.5.4	Protein Engineering of Trypsin-Like Proteases	411
15.5.5	Computational Design	412
15.6	Enzymes for Peptide Terminal Modification	412
15.6.1	Subtilisins for C-Terminal Peptide Modification	412
15.6.2	C-Terminal Activation by Lipase	413
15.6.3	Peptide Deformylase	414
15.6.4	Peptide Amidases for C-Terminal Modification	414
15.6.5	Enzymes for N-Terminal Modification	415
15.6.6	Enzymes for Peptide Cyclization	415
15.7	Conclusions	415
	References	416

Chapter 16	 Biocatalysis for Drug Discovery and Development	421
	<i>Youyun Liang, Mingzi M. Zhang, Ee Lui Ang, and Huimin Zhao</i>	

16.1	Introduction	421
16.2	Single Enzymatic Reactions	423
16.2.1	Hydrolytic Reaction	423
16.2.2	Reduction	431
16.2.3	Oxidation	432
16.2.4	C–C Bond-Forming Reaction	434
16.2.5	Michael-Type Reaction	434
16.2.6	Diels–Alder Reaction	435
16.2.7	Pictet–Spengler Reaction	435
16.2.8	Terpene Cyclization	435
16.2.9	Transfer Reaction	436
16.2.10	Fluorination	436
16.2.11	Other Reactions	437
16.2.12	Bifunctional Enzymes	437
16.3	Multienzyme Biocatalytic Reactions	437
16.3.1	One-Pot Cascade Reactions	438
16.3.2	Whole-Cell Biocatalysts	440
16.3.3	Multistep Biocatalytic Conversions	444
16.4	Future Perspective: Biocatalysts for the Pharmaceutical Industry	445
16.4.1	Biocatalyst Discovery: New Enzymes, New Chemistries	446
16.4.2	Biocatalyst Development: Improvement of Desired Properties	447
16.4.3	Integration of Biocatalytic Processes	448
16.5	Conclusion	448
	References	449

Chapter 17	 Application of Aromatic Hydrocarbon Dioxygenases	457
	<i>Watumesa A. Tan and Rebecca E. Parales</i>	

17.1	Introduction	457
17.2	Challenges in Aromatic Hydrocarbon Dioxygenase Applications	457
17.3	Protein Engineering to Improve Enzymatic Activity and Alter Substrate Specificity	459
17.4	Protein Engineering for the Production of Specific Chemicals	464

17.5	Strain Modification for the Development of New Biodegradation Pathways	467
17.6	Phytoremediation: The Expression of Bacterial Dioxygenases in Plant Systems for Bioremediation Purposes	468
17.7	Concluding Remarks	469
	Acknowledgments	469
	References	469
Chapter 18	 <i>Ene-reductases and their Applications</i>	473
	<i>Tanja Knaus, Helen S. Toogood, and Nigel S. Scrutton</i>	
18.1	Introduction	473
18.2	Substrate Classes and Industrial Applications	474
18.3	Multienzyme Reactions	478
18.4	Alternative Hydride Sources	479
18.5	Improvements of Productivity, Stereoselectivity, and/or Conversion	482
	References	486
Chapter 19	 <i>Recent Developments in Aminopeptidases, Racemases, and Oxidases</i>	489
	<i>Yasuhisa Asano, Seiji Okazaki, and Kazuyuki Yasukawa</i>	
19.1	Aminopeptidase	489
19.1.1	Discovery of D-Stereospecific Aminopeptidase and its Utilization for Dynamic Kinetic Resolution	489
19.1.2	Discovery of D-Aminopeptidase, D-Amino Acid Amidase, and Alkaline D-Peptidase	489
19.1.3	Structure of D-Aminopeptidase (DAP)	490
19.1.4	Structure of D-Amino Acid Amidase (DaaA)	491
19.2	Racemase	492
19.2.1	Synthesis of D-Amino Acids by Optical Resolution and Dynamic Kinetic Resolution	492
19.2.2	Structure of ACL Racemase	494
19.2.3	<i>In Silico</i> Identification of ACL Racemases	495
19.3	Amino Acid Oxidase	495
19.3.1	Development of Novel R-Stereoselective Amine Oxidase	495
19.3.2	Design of R-Stereoselective Amine Oxidase	497
19.3.3	Deracemization Reaction with R-Stereoselective AOx	498
19.3.4	Structure of the Mutant Porcine Kidney D-Amino Acid Oxidase (Y228L, R283G)	499
	References	500
Chapter 20	 <i>Biocatalytic Cascades for API Synthesis</i>	503
	<i>John M. Woodley</i>	
20.1	Introduction	503
20.2	Multienzymatic Biocatalysis	504
20.2.1	Rationale	504
20.2.2	Biocatalytic Cascade Concepts	505
20.3	Process Aspects for Multistep Biocatalysis	506
20.3.1	Balancing Reaction Schemes	507
20.3.2	Biocatalytic Reactor Options	507
20.3.3	Process Intensification	508
20.3.4	Continuous Processes	508
20.3.5	Process Integration	509

20.4	Process Development	511
20.5	Biocatalytic Cascade Examples	512
20.5.1	Linear Cascades	512
20.5.2	Parallel Cascades	513
20.5.3	Cyclic Cascades	513
20.5.4	Orthogonal Cascades	513
20.5.5	Linear-Parallel	514
20.5.6	Linear-Cyclic	514
20.5.7	Complex Cascades	514
20.5.8	Convergent Parallel Cascade	514
20.6	Future Outlook	515
20.6.1	Protein Engineering	515
20.6.2	Flow Chemistry and Process Intensification	516
	References	516

Chapter 21	 Yeast-Mediated Stereoselective Synthesis	519
	<i>René Csuk</i>	

21.1	Introduction	519
21.2	Reductions of Aldehydes and Ketones	521
21.3	Reduction of Thiocarbonyls or Sulfur-Containing Compounds	524
21.4	Reduction of Functionalized Carbonyl and Dicarbonyl Compounds	524
21.5	Reduction of Keto Esters	527
21.6	Hydrolysis of Esters	529
21.7	Immobilized Baker's Yeast	530
21.8	Whole-Cell Biocatalysis in Ionic Liquids and Deep Eutectic Solvents	531
21.9	C–C Bond-Forming and Breaking Reactions	532
21.10	Miscellaneous Reactions	533
21.11	Conclusions	534
	References	534

Chapter 22	 Biocatalytic Introduction of Chiral Hydroxy Groups using Oxygenases and Hydratases	545
	<i>Jun Ogawa, Makoto Hibi, and Shigenobu Kishino</i>	

22.1	Introduction	545
22.2	Regio- and Stereoselective Hydroxylation of Propylbenzene and 3-Chlorostyrene by Cytochrome P450 BM-3 and its Mutant	546
22.3	Regio- and Stereoselective Hydroxylation of Aliphatic Amino Acids by Fe(II)/α-Ketoglutarate-Dependent Dioxygenases	547
22.3.1	L-Isoleucine 4-Hydroxylase	547
22.3.2	Fe/ α KG-DOs Closely Homologous with L-Isoleucine 4-Hydroxylase	548
22.3.3	L-Leucine 5-Hydroxylase	549
22.3.4	N-Succinyl L-Leucine 3-Hydroxylase	549
22.3.5	Catalytic Properties of the Aliphatic Amino Acid Hydroxylases	550
22.3.6	Practical Use of Fe(II)/ α -Ketoglutarate-Dependent Dioxygenases Coupled with Cosubstrate Generation System	550
22.4	Regio- and Stereoselective Hydration of Unsaturated Fatty Acids by a Novel Fatty Acid Hydratase	551
22.4.1	Linoleic Acid Δ 9 Hydratase	552
22.4.2	Efficient Enzymatic Production of Hydroxy Fatty Acids by Linoleic Acid Δ 9 Hydratase	553
22.5	Conclusion	553
	Acknowledgment	553
	References	553

Chapter 23 Asymmetric Synthesis with Recombinant Whole-Cell Catalyst	557
<i>Harald Gröger, Werner Hummel, and Severin Wedde</i>	
23.1 Introduction	557
23.2 The Design/Construction of Whole-Cell Catalysts	558
23.3 Biotransformations with Whole-Cell Catalysts	561
23.3.1 Hydrolysis Reactions	561
23.3.2 Hydration and Dehydration Reactions	563
23.3.3 C–C Bond-Forming Reactions	565
23.3.4 Reduction Reactions	568
23.3.5 Oxidation Reactions	576
23.4 Conclusion	581
References	581
Chapter 24 Lipases and Esterases as User-Friendly Biocatalysts in Natural Product Synthesis	587
<i>Kenji Mori</i>	
24.1 Introduction	587
24.2 Desymmetrization of Prochiral or <i>meso</i> -Diols and Diacetates	587
24.2.1 Desymmetrization of <i>meso</i> -Compounds with 1,2-Stereogenic Centers	588
24.2.2 Desymmetrization of <i>meso</i> -Compounds with 1,3- and 1,5-Stereogenic Centers	590
24.2.3 Desymmetrization of Prochiral Compounds with a Single Stereogenic Center	591
24.3 Kinetic Resolution of Racemic Alcohols	592
24.3.1 Kinetic Resolution of (±)-Primary Alcohols	592
24.3.2 Kinetic Resolution of Acyclic (±)-Secondary Alcohols	593
24.3.3 Kinetic Resolution of Cyclic (±)-Secondary Alcohols	596
24.4 Preparation of Enantiopure Intermediate(s) from a Mixture of Stereoisomers	599
24.4.1 (1 <i>S</i> ,4 <i>R</i>)-4- <i>t</i> -Butyldimethylsilyloxy-3-Chloro-2-Cyclopenten-1-ol (54)	599
24.4.2 (4 <i>R</i> ,5 <i>S</i>)-5-Hydroxy-4-Methyl-3-Hexanone (55)	599
24.4.3 (3 <i>R</i> ,14 <i>R</i> ,26 <i>R</i>)-3,26-Diacetoxy-14-Methyl-1,2-bis(trimethylsilyl)octacos-4,24-Diene-1,27-Diyne (60)	600
24.5 Conclusion	601
Acknowledgments	601
References	601
Chapter 25 Hydroxynitrile Lyases for Biocatalytic Synthesis of Chiral Cyanohydrins	603
<i>Romana Wiedner, Helmut Schwab, and Kerstin Steiner</i>	
25.1 Introduction	603
25.2 Discovery of Hydroxynitrile Lyases: Bioprospecting	604
25.2.1 Screening Plants Based on Detection of Activity	605
25.2.2 Isolation of HNL Proteins and Identification of the Encoding Genes	605
25.2.3 Database Mining	605
25.2.4 Heterologous Expression	609
25.3 Applications of Hydroxynitrile Lyases	609
25.3.1 Cyanohydrins	609
25.3.2 β -Nitro Alcohols	610
25.4 Structural and Mechanistic Aspects	611
25.5 Engineering of Hydroxynitrile Lyases	612
25.5.1 Substrate Scope, Activity, and Enantioselectivity	612
25.5.2 Stability	619
25.5.3 Expression	619
25.5.4 New Catalytic Activities	620

25.6 Reaction Engineering and Reaction Systems	620
25.6.1 Reaction Systems	620
25.6.2 Immobilization of HNLs	622
25.7 Conclusion	623
Acknowledgment	623
References	624
Chapter 26 Biocatalysis: Nitrilases in Organic Synthesis	629
<i>Jin-Song Gong, Jin-Song Shi, and Zheng-Hong Xu</i>	
26.1 Introduction	629
26.2 Nitrilase Discovery	630
26.2.1 Conventional Screening	630
26.2.2 Metagenomic Mining	630
26.2.3 Genome Mining	630
26.3 Nitrilase Improvement	631
26.3.1 Culture Optimization	631
26.3.2 Nitrilase Reengineering	632
26.4 Applications in Organic Synthesis	635
26.4.1 Production of Glycolic Acid	635
26.4.2 Production of Iminodiacetic Acid	635
26.4.3 Production of Indole-3-Acetic Acid	636
26.4.4 Conversion of Phenylacetonitrile and its Derivates	636
26.4.5 Regioselective Hydrolysis of Dinitriles	637
26.4.6 Degradation of Benzonitrile Herbicides	638
26.5 Conclusions and Future Prospects	638
Acknowledgments	639
References	639
Chapter 27 Biotechnology for the Production of Chemicals, Intermediates, and Pharmaceutical Ingredients	643
<i>Hans-Peter Meyer</i>	
27.1 Introduction	643
27.2 Value Chains and Markets	645
27.2.1 Pharmaceuticals	647
27.2.2 Medical Technology (MedTech)	650
27.2.3 Food and Feed	650
27.2.4 Flavor and Fragrance	652
27.2.5 Cosmetics and Personal Care	653
27.2.6 Polymers	654
27.2.7 Surfactants and Lubricants	657
27.2.8 Commodity Chemicals	658
27.2.9 Energy	659
27.2.10 Other Markets and Products	660
27.3 The Toolbox	661
27.3.1 The Current Toolbox	661
27.3.2 The Future Toolbox	662
27.4 Sustainability, Green Premium Pricing, and Subsidies	665
27.5 Regulatory Aspects and Public Perception	667
27.6 Innovation (Not Only in the Laboratory!)	669
27.7 Conclusions	670
Acknowledgments	671
References	671

Chapter 28 <i>Microbial Transformations of Pentacyclic Triterpenes</i>	675
<i>Robert Azerad</i>	
28.1 Introduction	675
28.2 Typical Biotransformations in the Lupane Family	677
28.3 Typical Biotransformations in the Oleane Family	680
28.4 Typical Biotransformations in the Ursane Family	692
28.5 Microbial Transformations of Other PTs	704
28.6 Glycosylations and Deglycosylations	704
28.7 Conclusion and Perspectives	710
References	710
Chapter 29 <i>Transaminases and their Applications</i>	715
<i>Sarah-Marie Dold, Christoph Syldatk, and Jens Rudat</i>	
29.1 Introduction	715
29.2 General Properties of Transaminases	715
29.2.1 Classification as Pyridoxal-5'-Phosphate-Dependent Enzymes	716
29.2.2 Classification Based on Substrate Scope	716
29.2.3 Reaction Mechanism	717
29.2.4 Enantioselectivity of Transaminases	718
29.3 Synthesis Strategies with Transaminases	719
29.3.1 Synthesis of Chiral Amines	720
29.3.2 Synthesis of Canonical and Noncanonical Amino Acids	729
29.3.3 Synthesis of β -Amino Acids	731
29.3.4 Synthesis of Amino Alcohols	733
29.3.5 Transaminase-Catalyzed Reactions with Whole Cells	733
29.4 Approaches to Optimize the Transaminase-Catalyzed Reactions	735
29.4.1 Protein Engineering by Rational Enzyme Design	736
29.4.2 Protein Engineering by Directed Evolution	736
29.4.3 Immobilization of Transaminases	738
29.4.4 Process Development: A Fast Way to Identify Appropriate Transaminases	741
29.4.5 ω -Transaminases in Organic Solvents	742
29.5 Conclusion	743
References	743
Index	747