Ligand Design in Medicinal Inorganic Chemistry

Edited by

TIM STORR

Department of Chemistry, Simon Fraser University, Burnaby, BC V5A-1S6, Canada

Contents

	About the Editor List of Contributors						
1	Introduction to Ligand Design in Medicinal Inorganic Chemistry						
•	Mich	iel R. Jon	es, Dustin Duncan, and Tim Storr	1			
	17210710	Referei		7			
2	Platii	um-Base	ed Anticancer Agents	9			
	Alice V. Klein and Trevor W. Hambley						
	2.1	Introdu	iction	9			
	2.2	The ad	vent of platinum-based anticancer agents	9			
	2.3		ies for overcoming the limitations of cisplatin	11			
	2.4	The inf	luence of ligands on the physicochemical properties of platinum				
		antican	cer complexes	11			
		2.4.1	Lipophilicity	11			
		2.4.2	Reactivity	13			
		2.4.3	Rate of reduction	14			
	2.5	Ligand	s for enhancing the anticancer activity of platinum complexes	15			
		2.5.1	Ligands for improving DNA affinity	15			
		2.5.2	Ligands for inhibiting enzymes	17			
	2.6		s for enhancing the tumour selectivity of platinum complexes	20			
		2.6.1	Ligands for targeting transporters	21			
		2.6.2	Ligands for targeting receptors	22			
		2.6.3	Ligands for targeting the EPR effect	28			
		2.6.4	Ligands for targeting bone cancer	33			
	2.7	-	s for photoactivatable platinum complexes	35			
	2.8	Conclu		36			
		Referei	nces	37			
3	Coor	dination	Chemistry and Ligand Design in the Development of Metal Based				
	Radio	Radiopharmaceuticals					
	Eszter Boros, Bernadette V. Marquez, Oluwatayo F. Ikotun, Suzanne E. Lapi, and Cara L.						
	<i>Ferreira</i> 3.1 Introduction						
	.7.1	3.1.1	Metals in nuclear medicine	47 48			
		3.1.1	The importance of coordination chemistry	40 49			
		3.1.2	Overview	49 50			
		5.1.5	Overview	30			

vi	Contents
v /	Contento

	3.2	Genera	l metal based radiopharmaceutical design	50
		3.2.1	Choice of radionuclide	50
		3.2.2	Production of the radiometal starting materials	51
		3.2.3	Ligand and chelate design consideration	51
	3.3	Survey	of the coordination chemistry of radiometals applicable to nuclear medicine	53
		3.3.1	Technetium	53
		3.3.2	Rhenium	56
		3.3.3	Gallium	57
		3.3.4	Indium	60
		3.3.5	Yttrium and lanthanides	61
		3.3.6	Copper	62
		3.3.7	Zirconium	65
		3.3.8	Scandium	66
		3.3.9	Cobalt	68
	3.4	Conclu	sions	71
		Referen	nces	71
4			in d-Block Optical Imaging Agents and Sensors	81
		Coogan		
	4.1		ary and scope	81
	4.2	Introdu		82
	1.2	4.2.1	Criteria for biological imaging optical probes	82
	4.3		ew of transition-metal optical probes in biomedicinal applications	83
	4.4	4.3.1	Common families of transition metal probes	83
	4.4	4.4.1	design for controlling photophysics	87
		4.4.1 4.4.2	Photophysical processes in transition metal optical imaging agents and sensors	87
		4.4.2	Photophysically active ligand families – tuning electronic levels Ligands which control photophysics through indirect effects	87 90
		4.4.4	Transition metal optical probes with carbonyl ligands	90 90
	4.5		design for controlling stability	90 91
	4.6		design for controlling transport and localisation	91 91
	4.0	4.6.1	Passive diffusion	91 91
		4.6.2	Active transport	92
	4.7		design for controlling distribution	92
	•••	4.7.1	Mitochondrial-targeting probes	92
		4.7.2	0 01	93
		4.7.3	Bioconjugation	94
	4.8		d examples of ligand design for important individual probes	101
		4.8.1	A pH-sensitive ligand to control Ir luminescence	101
		4.8.2	Dimeric NHC ligands for gold cyclophanes	102
	4.9	Transit	ion metal probes incorporating or capable of more than one imaging mode	103
		4.9.1	Bimodal MRI/optical probes	103
		4.9.2	Bimodal radio/optical probes	104
		4.9.3	Bimodal IR/optical probes	106
	4.10	Conclu	isions and prospects	106
			viations	108
		Referen	nces	108

Contents	vii

5	Lumir	iescent L	anthanoid Probes	113		
	Edwar	d S. O'Ne	eill and Elizabeth J. New	110		
	5.1	Introdu		113		
	5.2	Lumine	scent probes	114		
	5.3		thanoids – an overview	116		
	5.4		hysical properties of luminescent lanthanoid complexes	116		
		5.4.1	The need for a sensitiser	117		
	5.5	The sui	tability of lanthanoid complexes as luminescent probes	119		
	5.6	Modula	ting chemical properties by ligand design	120		
		5.6.1	Chemical stability	120		
		5.6.2	Photophysical properties	120		
		5.6.3	Analyte response	122		
	5.7		ting biological properties by ligand design	129		
		5.7.1	Cellular uptake	129		
		5.7.2	Localisation to desired region of the cell	131		
		5.7.3	Maintenance of cellular homeostasis	135		
	5.8		ding remarks	135		
			vledgement	138		
		Referen		138		
				150		
6	Metal	Compley	xes of Carbohydrate-targeted Ligands in Medicinal Inorganic			
	Chem		and of our only at the same sugards in the define more game	145		
	Yuji Mikata and Michael Gottschaldt					
	6.1	Introdu		145		
	6.2		ctive metal complexes bearing a carbohydrate moiety	147		
	6.3		ntrast agents utilizing metal complexes bearing carbohydrate moieties	150		
	6.4		cent complexes with carbohydrate-conjugated functions	153		
	6.5		ydrate-attached photosensitizers for photodynamic therapy (PDT)	157		
	6.6		ydrate-based metal complexes exhibiting anticancer activity	161		
	6.7		ydrate-appended metallic nanoparticles, quantum dots, electrodes and surfaces	165		
	6.8		ling remarks	167		
	0.0	Referen	•	168		
				100		
7	Design	n of Schif	f Base-derived Ligands: Applications in Therapeutics and Medical			
	Diagn		5 11	175		
	0		eira and Heloisa Beraldo			
	7.1	Introdu		175		
	7.2		of thiosemicarbazones and hydrazones as drug candidates for cancer			
		chemot		176		
	7.3		of bis(thiosemicarbazone) ligands	184		
		7.3.1	Bis(thiosemicarbazones) and their metal complexes as anticancer agents	184		
		7.3.2	Design of bis(thiosemicarbazones) as ligands for copper(II) complexes with			
			potential applications in medical diagnosis	186		
		7.3.3	Design of functionalized bis(thiosemicarbazone) ligands to target selected bio-			
			logical processes	189		
	7.4	Design	of Schiff base-derived ligands as anti-parasitic drug candidates: Applications in			
		•	apeutics of chagas disease	193		

	7.5	Conclu	ding remarks	197			
		Referer	nces	197			
8	Metal-based Antimalarial Agents						
	Maril	bel Navarı	o and Christophe Biot				
	8.1	Backgr	ound	205			
	8.2	Standar	d antimalarial chemotherapy	208			
		8.2.1	Quinoline-based antimalarials	208			
		8.2.2	Quinoline-based antimalarials target	209			
		8.2.3	Other standard antimalarial therapies	210			
	8.3		omplexes in malaria	212			
		8.3.1	Chloroquine as an inter-ligand in the design of metal-based antimalarial agents	212			
		8.3.2	Chloroquine as an intra-ligand in the design of metal-based antimalarial agents	214			
		8.3.3	Trioxaquines as a ligand in the design of metal-based antimalarial agents	218			
		8.3.4	Other standard antimalarial drugs and diverse ligands used in the design				
			of metal-based antimalarial agents	218			
	8.4	Conclu	sion	220			
			vledgements	221			
		Referer	nces	221			
9	Therapeutic Gold Compounds						
	Therapeutic Gold Compounds 22' Susan J. Berners-Price and Peter J. Barnard 22'						
	9.1	Introdu		227			
	9.2		hritic gold drugs	229			
		9.2.1	Gold (I) thiolates	229			
		9.2.2	Gold (I) phosphines	229			
		9.2.3	Design of specific enzyme inhibitors	230			
	9.3		omplexes as anticancer agents	231			
		9.3.1	Gold(I) compounds	231			
		9.3.2	Gold (III) compounds	241			
	9.4		omplexes as antiparasitic agents	244			
		9.4.1	Metal drug synergism	245			
		9.4.2	Emerging parasite drug targets for gold compounds	245			
	9.5		ling remarks: Design of gold complexes that target specific proteins	246			
			vledgements	248			
		Referen	ices	248			
10			to Target and Modulate Metal-Protein Interactions in Neurodegenerative				
	Disea			257			
			k, Amit S. Pithadia, Alaina S. DeToma, Kyle J. Korshavn, and Mi Hee Lim				
	10.1	Introdu		257			
		10.1.1	Metals in the brain	257			
		10.1.2	Aberrant metal-protein interactions	259			
	10.0	10.1.3	Oxidative stress	260			
	10.2		egenerative diseases	261			
		10.2.1	Alzheimer's disease (AD)	261			
		10.2.2	Parkinson's disease (PD)	261			

		10.2.3 Prion disease	261
		10.2.4 Huntington's disease (HD)	264
		10.2.5 Amyotrophic lateral sclerosis (ALS)	264
	10.3	Ligand design to target and modulate metal-protein interactions	265
		10.3.1 Metal chelating compounds	267
		10.3.2 Small molecules designed for metal-protein complexes	269
		10.3.3 Other relevant compounds	202
		10.3.4 Naturally occurring molecules	273
	10.4	Conclusions	274
		Abbreviations	275
		References	276
11	Ratio	nal Design of Copper and Iron Chelators to Treat Wilson's Disease and	
		chromatosis	287
		elle Gateau, Elisabeth Mintz, and Pascale Delangle	201
	11.1	Introduction	287
	11.2	Chelating agents	287
		11.2.1 Thermodynamic parameters	288
		11.2.2 Principles of coordination chemistry applied to chelation therapy	289
		11.2.3 Examples of classical chelating agents	20)
	11.3	Modern medicinal inorganic chemistry and chelation therapy	291
	11.4	Iron overload	292
		11.4.1 Iron distribution and homeostasis	292
		11.4.2 Iron overload diseases	294
		11.4.3 Fe^{3+} chelators	295
		11.4.4 Current developments	296
	11.5	Copper overload in Wilson's disease	299
		11.5.1 Copper metabolism	299
		11.5.2 Copper homeostasis	300
		11.5.3 Wilson's disease	303
	11.6	Current developments in copper overload treatments	304
		11.6.1 From Cu homeostasis understanding to the rational design of drugs	304
		11.6.2 Cu ⁺ chelating units inspired from proteins involved in Cu homeostasis	305
		11.6.3 Cu ⁺ chelators inspired from metallochaperones	306
		11.6.4 Cysteine-rich compounds inspired from metallothioneins	307
		11.6.5 Liver-targeting: the ASGP-R	308
		11.6.6 Two glycoconjugates that release high affinity Cu chelators in hepatocytes	308
	11.7	Conclusion	311
		Acknowledgments	312
		References	312
12		Contrast Agents	321
		S. Bonnet and Éva Tóth	
	12.1	Introduction to MRI contrast agents	321
	12.2	Ligand optimization to increase relaxivity	323
		12.2.1 Hydration number	324
		12.2.2 Optimization of water exchange kinetics via rational ligand design	325

х	Contents

		12.2.3	Optimization of the rotational dynamics via rational ligand design: Size and	
			flexibility	329
	12.3	-	design for CEST agents	332
		12.3.1	Application of paramagnetic ions – PARACEST	333
	12.4	-	design for responsive probes	333
		12.4.1	Probes responsive to pH	334
		12.4.2	Probes responsive to physiological cations	338
		12.4.3	Probes responsive to enzymes	344
	12.5	Conclus		348
		Abbrevi		348
		Referen	ces	348
13	Photo	activatab	le Metal Complexes and Their Use in Biology and Medicine	355
			Maggard and Pradip K. Mascharak	
	13.1	Introduc		355
	13.2		n-inspired photoactivatable chemotherapeutics	358
	13.3		ased photosensitizers in photodynamic therapy	360
	13.4		duced interactions of coordination complexes with DNA	362
		13.4.1	Photocleavage of DNA with coordination complexes	362
		13.4.2	Photoactivatable complexes as antisense agents	364
	13.5		tivatable metal complexes that release small bioactive molecules	367
	13.6	Conclus		371
		Referen	ces	372
14			Inhibitors	375
	David	P. Martin,	, David T. Puerta, and Seth M. Cohen	
	14.1		inding groups in metalloprotein inhibitor design	375
	14.2		carboxylates, phosphates, and hydroxamates	379
	14.3		elated to hydroxamic acids	382
	14.4		elated to carboxylic acids	387
	14.5		elated to thiols	391
	14.6		alcohol, and carbonyl MBGs	393
	14.7	Other M		395
	14.8	Conclus		399
		Reference	265	401
15	Ruthe	enium Ant	ticancer Compounds with Biologically-derived Ligands	405
			nd Charles J. Walsby	
	15.1	Introduc		405
		15.1.1	Simple coordination complexes	406
		15.1.2	Ruthenium(III) complexes with heterocyclic N-donor and/or DMSO ligands	406
		15.1.3	Ruthenium(II) arene complexes	408
		15.1.4	Polypyridyl complexes	410
	15.0	15.1.5	Other ruthenium anticancer compounds	411
	15.2		acids and amino acid-containing ligands	411
	15.3		and peptide-functionalized ligands	413
	15.4	Coordina	ated proteins as ligands	416

15.5	Carbohydrate-based ligands	419
15.6	Purine, nucleoside, and oligonucleotide ligands	422
15.7	Other selected ruthenium complexes with biological ligands	424
	15.7.1 steroids	424
	15.7.2 Curcumin – an example of a natural product ligand	425
15.8	Conclusion	426
	References	426
Index		439