A FOUNDATION IN DIGITAL COMMUNICATION

Second Edition

AMOS LAPIDOTH ETH Zurich

Contents

Pr	eface to the Second Edition	xvi
Pr	eface to the First Edition	xviii
Ac	knowledgments for the Second Edition	xxvi
Ac	knowledgments for the First Edition	xxvii
1	Some Essential Notation	1
2	Signals, Integrals, and Sets of Measure Zero2.1Introduction2.2Integrals2.3Integrating Complex-Valued Signals2.4An Inequality for Integrals2.5Sets of Lebesgue Measure Zero2.6Swapping Integration, Summation, and Expectation2.7Additional Reading2.8Exercises	4 4 5 6 7 10 11 11
3	The Inner Product3.1The Inner Product	14 14 17 18 20 23 23 23 23 24
4	The Space \mathcal{L}_2 of Energy-Limited Signals4.1Introduction4.2 \mathcal{L}_2 as a Vector Space4.3Subspace, Dimension, and Basis4.4 $ \mathbf{u} _2$ as the "length" of the Signal $u(\cdot)$ 4.5Orthogonality and Inner Products4.6Orthonormal Bases4.7The Space L_2	27 27 27 29 31 31 33 37 49

	4.8	Additional Reading	. 51
	4.9	Exercises	. 51
5	Conv	olutions and Filters	54
	5.1	Introduction	. 54
	5.2	Time Shifts and Reflections	. 54
	5.3	The Convolution Expression	. 55
	5.4	Thinking About the Convolution	. 55
	5.5	When Is the Convolution Defined?	. 56
	5.6	Basic Properties of the Convolution	. 58
	5.7	Filters	. 59
	5.8	The Matched Filter	. 59
	5.9	The Ideal Unit-Gain Lowpass Filter	. 61
	5.10	The Ideal Unit-Gain Bandpass Filter	. 62
	5.11	Young's Inequality	. 62
	5.12	Additional Reading	. 62
	5.13	Exercises	. 62
6	The I	Frequency Response of Filters and Bandlimited Signals	65
•	6.1	Introduction	. 65
	6.2	Review of the Fourier Transform	. 65
	6.3	The Frequency Response of a Filter	. 77
	6.4	Bandlimited Signals and Lowpass Filtering	. 80
	6.5	Bandlimited Signals Through Stable Filters	. 90
	6.6	The Bandwidth of a Product of Two Signals	. 91
	6.7	Bernstein's Inequality	. 94
	6.8	Time-Limited and Bandlimited Signals	. 94
	6.9	A Theorem by Paley and Wiener	. 97
	6.10	Picket Fences and Poisson Summation	. 97
	6.11	Additional Reading	. 99
	6.12	Exercises	. 100
7	Dacch	and Signals and Their Representation	104
"	T 455L	Introduction	104
	7.1	Baseband and Deschand Signals	104
	7.2	Bandwidth around a Carrier Frequency	107
	7.3	Pool Deschand Signals	111
	75	The Applytic Signal	112
	7.5	Pacahand Depresentation of Pool Deschand Signals	110
	7.0	Energy Limited Deschand Signals	122
	7.1	Chieffing to Deschand and Convolving	. 155
	7.8	Shifting to Passband and Convolving	. 141
	1.9 7 10		1/1
	1.10		. 142
8	Comp	plete Orthonormal Systems and the Sampling Theorem	147
	8.1	Introduction	. 147
	8.2	Complete Orthonormal System	. 147
	8.3	The Fourier Series	. 151

	8.4 8.5 8.6 8.7 8.8 8.9	The Sampling Theorem \ldots The Samples of the Convolution \ldots Closed Subspaces of \mathcal{L}_2 \ldots	. 152 . 156 . 156 . 161 . 161 . 161
9	Sampl	ing Real Passband Signals	168
	9.1	Introduction	. 168
	9.2	Complex Sampling	. 169
	9.3	Reconstructing \mathbf{x}_{PB} from its Complex Samples	. 170
	9.4	Exercises	. 173
10	Mappi	ing Bits to Waveforms	176
	10.1	What Is Modulation?	. 176
	10.2	Modulating One Bit	. 177
	10.3	From Bits to Real Numbers	. 178
	10.4	Block-Mode Mapping of Bits to Real Numbers	. 179
	10.5	From Real Numbers to Waveforms with Linear Modulation	. 181
	10.6	Recovering the Signal Coefficients with a Matched Filter	. 182
	10.7	Pulse Amplitude Modulation	. 184
	10.8	Constellations	. 185
	10.9	Uncoded Transmission	. 187
	10.10	Bandwidth Considerations	. 188
	10.11	Design Considerations	. 189
	10.12	Some Implementation Considerations	. 191
	10.13	Exercises	. 193
11	Nyqui	st's Criterion	195
	11.1	Introduction	. 195
	11.2	The Self-Similarity Function of Energy-Limited Signals	. 196
	11.3	Nyquist's Criterion	. 199
	11.4	The Self-Similarity Function of Integrable Signals	. 208
	11.5	Exercises	. 208
12	Stoch	astic Processes: Definition	213
	12.1	Introduction and Continuous-Time Heuristics	. 213
	12.2	A Formal Definition	. 214
	12.3	Describing Stochastic Processes	. 216
	12.4	Additional Reading	. 216
	12.5	Exercises	. 217
13	Static	onary Discrete-Time Stochastic Processes	219
10	13.1		. 219
	13.2	Stationary Processes	. 219
	13.3	Wide-Sense Stationary Stochastic Processes	. 220
	13.4	Stationarity and Wide-Sense Stationarity	. 221
	13.5	The Autocovariance Function	. 222

	13.6	The Power Spectral Density Function	. 224
	12.0		220
	15.0		
14	Energ	and Power in PAM	232
- •	14.1	Introduction	. 232
	14.2	Fnergy in PAM	. 232
	14.3	Defining the Power in PAM	. 235
	14.4	On the Mean of Transmitted Waveforms	. 237
	14.5	Computing the Power in PAM	. 238
	14.5	A More Formal Account	249
	14.0	Evercises	253
	17.1		. 200
15	Opera	ational Power Spectral Density	257
	15.1	Introduction	. 257
	15.2	Motivation	. 258
	15.3	Defining the Operational PSD	. 262
	15.4	The Operational PSD of Real PAM Signals	. 266
	15.5	A More Formal Account	. 270
	15.6	Operational PSD and Average Autocovariance Function	. 276
	15.7	The Operational PSD of a Filtered Stochastic Process	. 283
	15.8	The Operational PSD and Power	. 285
	15.9	Exercises	. 292
10	0		205
10	Quad	rature Amplitude Modulation	295
	10.1		. 295
	10.2		. 290
	10.3		. 297
	16.4		. 299
	16.5	Orthogonality Considerations	. 300
	16.6	Spectral Efficiency	. 303
	16.7	QAM Constellations	. 303
	16.8	Recovering the Complex Symbols via Inner Products	. 305
	16.9	Filtering QAM Signals	. 309
	16.10	Exercises	. 311
17	Comp	lex Random Variables and Processes	314
	17.1	Introduction	. 314
	17.2	Notation	315
	17.3	Complex Random Variables	316
	17.4	Complex Random Vectors	323
	17.5	Discrete-Time Complex Stochastic Processes	323
	17.6	Limits of Proper Complex Bandom Variables	320
	17 7	On the Figenvalues of Large Toenlitz Matrices	227
	17.8	Exercises	337
18	Energy	y, Power, and PSD in QAM	341
	18.1	Introduction	341
			~

	18.2	The Energy in QAM	. 341
	18.3	The Power in QAM	. 344
	18.4	The Operational PSD of QAM Signals	. 349
	18.5	A Formal Account of Power in Passband and Baseband	. 354
	18.6	A Formal Account of the PSD in Baseband and Passband	. 361
	18.7	Evercises	370
	10.7		
19	The L	Inivariate Gaussian Distribution	373
	19.1		. 373
	19.2	Standard Gaussian Random Variables	. 373
	10.3	Gaussian Random Variables	375
	10.4		378
	10.5	Integrals of Exponentiated Quadratics	282
	19.5	The Moment Concepting Function	202
	19.0	The Characteristic Europtics of Coursians	201
	19.7		. 304
	19.8	Central and Noncentral Chi-Square Random Variables	. 380
	19.9		. 390
	19.10	Additional Reading	. 392
	19.11	Exercises	. 392
20	D'	- II. settests Testing	205
20	Binary	Hypothesis lesting	393
	20.1		. 395
	20.2	Problem Formulation	. 395
	20.3	Guessing in the Absence of Observables	. 397
	20.4	The Joint Law of H and Y	. 398
	20.5	Guessing after Observing \mathbf{Y}	. 400
	20.6	Randomized Decision Rules	. 403
	20.7	The MAP Decision Rule	. 405
	20.8	The ML Decision Rule	. 407
	20.9	Performance Analysis: the Bhattacharyya Bound	. 408
	20.10	Example	. 408
	20.11	(Nontelepathic) Processing	. 411
	20.12	Sufficient Statistics	. 416
	20.13	Implications of Optimality	. 424
	20.14	Multi-Dimensional Binary Gaussian Hypothesis Testing	. 425
	20.15	Guessing in the Presence of a Random Parameter	. 431
	20.16	Mathematical Notes	. 433
	20.17	Exercises	. 433
21	Multi	-Hypothesis Testing	441
	21.1	Introduction	. 441
	21.2	The Setup	. 441
	21.3	Optimal Guessing	. 442
	21.4	Example: Multi-Hypothesis Testing for 2D Signals	. 447
	21.5	The Union-of-Events Bound	451
	21.6	Multi-Dimensional M-ary Gaussian Hynothesis Testing	458
	21.7	Additional Reading	464
	21.1	Fuerclase	161
	<u>د</u>		0-

22	Suffici	ent Statistics	468
	22.1	Introduction	468
	22.2	Definition and Main Consequence	469
	22.3	Equivalent Conditions	471
	22.4	Identifying Sufficient Statistics	481
	22.5	Sufficient Statistics for the M-ary Gaussian Problem	485
	22.6	Irrelevant Data	487
	22.7	Testing with Random Parameters	489
	22.8	Additional Reading	491
	22.9	Exercises	491
23	The N	Aultivariate Gaussian Distribution	494
	23.1	Introduction	. 494
	23.2	Notation and Preliminaries	. 495
	23.3	Some Results on Matrices	. 497
	23.4	Random Vectors	. 503
	23.5	A Standard Gaussian Vector	. 509
	23.6	Gaussian Random Vectors	. 510
	23.7	Jointly Gaussian Vectors	. 523
	23.8	Moments and Wick's Formula	. 527
	23.9	The Limit of Gaussian Vectors Is a Gaussian Vector	. 528
	23.10	Conditionally-Independent Gaussian Vectors	. 529
	23.11	Additional Reading	. 533
	23.12	Exercises	. 534
			F 40
24	Comp	lex Gaussians and Circular Symmetry	540
24	Comp 24.1	lex Gaussians and Circular Symmetry	540 . 540
24	Comp 24.1 24.2	lex Gaussians and Circular Symmetry Introduction	540 540 540
24	Comp 24.1 24.2 24.3	lex Gaussians and Circular Symmetry Introduction Scalars Vectors	540 . 540 . 540 . 548
24	Comp 24.1 24.2 24.3 24.4	Iex Gaussians and Circular Symmetry Introduction	540 540 540 548 558
24	Comp 24.1 24.2 24.3 24.4	Ilex Gaussians and Circular Symmetry Introduction Scalars Vectors Exercises	540 540 540 548 558
24 25	Comp 24.1 24.2 24.3 24.4 Conti	Iex Gaussians and Circular Symmetry Introduction	540 . 540 . 540 . 548 . 558 560
24 25	Comp 24.1 24.2 24.3 24.4 Conti 25.1	Iex Gaussians and Circular Symmetry Introduction Scalars Vectors Exercises Introduction Notation The Sinite Dimensional Distributions	540 . 540 . 548 . 558 560 . 560
24 25	Comp 24.1 24.2 24.3 24.4 Conti 25.1 25.2 25.2	Iex Gaussians and Circular Symmetry Introduction Scalars Scalars Vectors Exercises Introduction Introduction Vectors Introduction Introduction Vectors Introduction Interview Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Interere Introd	540 . 540 . 548 . 558 560 . 560 . 560 . 560
24 25	Comp 24.1 24.2 24.3 24.4 Conti 25.1 25.2 25.3 25.4	Ilex Gaussians and Circular Symmetry Introduction Scalars Scalars Vectors Exercises Introduction Introduction Vectors Exercises Introduction	540 540 540 558 558 560 560 560 563 564
24	Comp 24.1 24.2 24.3 24.4 Conti 25.1 25.2 25.3 25.4 25.5	Ilex Gaussians and Circular Symmetry Introduction Scalars Scalars Vectors Exercises Introduction Baussian SP Stationary Continuous-Time Processes Stationary Continuous-Time Processes	540 . 540 . 548 . 558 560 . 560 . 560 . 563 . 564 . 566
24	Comp 24.1 24.2 24.3 24.4 Conti 25.1 25.2 25.3 25.4 25.5 25.6	Ilex Gaussians and Circular Symmetry Introduction Scalars Scalars Vectors Exercises Introduction Introduction Vectors Exercises Introduction Introduction Introduction Exercises Introduction Introduction <td< th=""><th>540 . 540 . 548 . 558 560 . 560 . 563 . 564 . 566 . 568</th></td<>	540 . 540 . 548 . 558 560 . 560 . 563 . 564 . 566 . 568
24	Comp 24.1 24.2 24.3 24.4 Conti 25.1 25.2 25.3 25.4 25.5 25.6 25.7	Ilex Gaussians and Circular Symmetry Introduction Scalars Scalars Vectors Exercises Intuous-Time Stochastic Processes Notation The Finite-Dimensional Distributions Definition of a Gaussian SP Stationary Continuous-Time Processes Stationary Gaussian Stochastic Processes Properties of the Autocovariance Function The Devent Station Stationary Gaussian Stochastic Processes Intervention Stationary Gaussian Stochastic Processes Stationary Gaussian Stochastic Processes Stationary Gaussian Stochastic Processes Stationary Spectral Departies of a Continuous Stationary Spectral Departs Stationary Spectral Departs	540 540 548 558 560 560 563 564 566 566 568 571
24	Comp 24.1 24.2 24.3 24.4 Conti 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8	Ilex Gaussians and Circular Symmetry Introduction Scalars Scalars Vectors Exercises Introduction Introduction Scalars Vectors Exercises Station The Finite-Dimensional Distributions Definition of a Gaussian SP Stationary Continuous-Time Processes Stationary Gaussian Stochastic Processes Properties of the Autocovariance Function The Power Spectral Density of a Continuous-Time SP The Spectral Distribution	540 540 548 558 560 560 560 563 564 566 568 568 571 573
24	Comp 24.1 24.2 24.3 24.4 Conti 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.0	Ilex Gaussians and Circular Symmetry Introduction Scalars Scalars Vectors Exercises Introduction Exercises Notation The Finite-Dimensional Distributions Definition of a Gaussian SP Stationary Continuous-Time Processes Stationary Gaussian Stochastic Processes Properties of the Autocovariance Function The Power Spectral Density of a Continuous-Time SP The Spectral Distribution Function	540 540 548 558 560 560 560 563 564 566 568 571 573 576
24	Comp 24.1 24.2 24.3 24.4 Conti 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.9 25.10	Iex Gaussians and Circular Symmetry Introduction Scalars Scalars Vectors Exercises nuous-Time Stochastic Processes Notation The Finite-Dimensional Distributions Definition of a Gaussian SP Stationary Continuous-Time Processes Stationary Gaussian Stochastic Processes Properties of the Autocovariance Function The Spectral Density of a Continuous-Time SP The Average Power Station Literards and Linear Function	540 540 548 558 560 560 563 564 566 568 571 573 576 578
24	Comp 24.1 24.2 24.3 24.4 Conti 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.9 25.10 25.11	Ilex Gaussians and Circular Symmetry Introduction Scalars Scalars Vectors Exercises nuous-Time Stochastic Processes Notation The Finite-Dimensional Distributions Definition of a Gaussian SP Stationary Continuous-Time Processes Stationary Gaussian Stochastic Processes Properties of the Autocovariance Function The Power Spectral Density of a Continuous-Time SP The Spectral Distribution Function The Average Power Stochastic Integrals and Linear Functionals	540 540 548 558 560 560 560 563 564 566 568 571 573 576 578 585
24	Comp 24.1 24.2 24.3 24.4 Conti 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.9 25.10 25.11 25.11 25.11	Ilex Gaussians and Circular Symmetry Introduction Scalars Scalars Vectors Exercises nuous-Time Stochastic Processes Notation The Finite-Dimensional Distributions Definition of a Gaussian SP Stationary Continuous-Time Processes Stationary Gaussian Stochastic Processes Properties of the Autocovariance Function The Power Spectral Density of a Continuous-Time SP The Spectral Distribution Function The Average Power Stochastic Integrals and Linear Functionals Linear Functionals of Gaussian Processes	540 540 548 558 560 560 563 564 566 568 571 573 576 578 578
24	Comp 24.1 24.2 24.3 24.4 Conti 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.9 25.10 25.11 25.12 25.12	Ilex Gaussians and Circular Symmetry Introduction Scalars Scalars Vectors Exercises Introduction Exercises Notation The Finite-Dimensional Distributions Definition of a Gaussian SP Stationary Continuous-Time Processes Stationary Gaussian Stochastic Processes Properties of the Autocovariance Function The Power Spectral Density of a Continuous-Time SP The Spectral Distribution Function The Average Power Stochastic Integrals and Linear Functionals Linear Functionals of Gaussian Processes The Joint Distribution of Linear Functionals	540 540 548 558 560 560 563 564 566 568 571 573 576 578 578 578
24	Comp 24.1 24.2 24.3 24.4 Conti 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.9 25.10 25.11 25.12 25.13 25.13 25.14	Ilex Gaussians and Circular Symmetry Introduction Scalars Vectors Exercises Introduction Exercises Notation The Finite-Dimensional Distributions Definition of a Gaussian SP Stationary Continuous-Time Processes Stationary Gaussian Stochastic Processes Properties of the Autocovariance Function The Spectral Density of a Continuous-Time SP The Average Power Stochastic Integrals and Linear Functionals Linear Functionals of Gaussian Processes The Joint Distribution of Linear Functionals	540 540 548 558 560 560 563 564 566 568 571 578 578 578 578 578 591 594 600
24	Comp 24.1 24.2 24.3 24.4 Conti 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.9 25.10 25.11 25.12 25.13 25.14 25.14 25.14	Intex Gaussians and Circular Symmetry Introduction Scalars Vectors Exercises Introduction Exercises Notation The Finite-Dimensional Distributions Definition of a Gaussian SP Stationary Continuous-Time Processes Stationary Gaussian Stochastic Processes Properties of the Autocovariance Function The Spectral Density of a Continuous-Time SP The Average Power Stochastic Integrals and Linear Functionals Linear Functionals of Gaussian Processes The Joint Distribution of Linear Functionals Filtering WSS Processes The PSD Revisited	540 540 548 558 560 560 563 564 566 568 571 573 576 578 578 578 591 594 600 602
24	Comp 24.1 24.2 24.3 24.4 Conti 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.9 25.10 25.11 25.12 25.13 25.14 25.15 25.14	Intex Gaussians and Circular Symmetry Introduction Scalars Vectors Exercises Intoduction Exercises Notation The Finite-Dimensional Distributions Definition of a Gaussian SP Stationary Continuous-Time Processes Stationary Gaussian Stochastic Processes Stationary Gaussian Stochastic Processes Properties of the Autocovariance Function The Power Spectral Density of a Continuous-Time SP The Average Power Stochastic Integrals and Linear Functionals Linear Functionals of Gaussian Processes The Joint Distribution of Linear Functionals Filtering WSS Processes The PSD Revisited	540 540 548 558 560 560 563 564 566 568 571 573 576 578 578 578 591 594 600 603 612

26	Detect	tion in White Gaussian Noise	620
	26.1	Introduction	620
	26.2	Setup	620
	26.3	From a Stochastic Process to a Random Vector	621
	26.4	The Random Vector of Inner Products	626
	26.5	Optimal Guessing Rule	628
	26.6	Performance Analysis	632
	26.7	The Front-End Filter	634
	26.8	Detection in Passband	637
	26.9	Some Examples	638
	26.10	Detection in Colored Gaussian Noise	652
	26.11	Multiple Antennas	662
	26.12	Detecting Signals of Infinite Bandwidth	664
	26.13	Exercises	665
27	Monco	sherent Detection and Nuisance Parameters	670
21	27.1	Introduction and Motivation	670
	27.1	The Setup	672
	27.2	From a SP to a Random Vector	673
	27.5	The Conditional Law of the Random Vector	675
	27.5	An Optimal Detector	678
	27.6	The Probability of Error	680
	27.7		681
	27.8	Extension to $M > 2$ Signals	683
	27.9	Exercises	685
20	Datas	ting DAM and OAM Signals in White Gaussian Noise	688
20		Introduction and Sotup	688
	20.1	A Random Vector and Its Conditional Law	689
	20.2	A Random Vector and its Conditional Law	691
	20.5	Consequences of Orthonormality	693
	20.4	Extension to OAM Communications	696
	20.5	Additional Reading	703
	28.7		. 703
~~		Di Di L Cada with Antinadal Simpling	707
29	Linear	Binary Block Codes with Antipodal Signaling	707
	29.1	Introduction and Setup \ldots and the Vector Space \mathbb{R}^{n}	708
	29.2	The Binary Field \mathbb{F}_2 and the vector space \mathbb{F}_2	711
	29.3	Binary Linear Encoders and Codes	714
	29.4	Binary Encoders with Antipodal Signaling	715
	29.5	Power and Operational Power Spectral Density	710
	29.6	Minimizing the Plack Error Pate	720
	29.7	Winimizing the Block Error Rate	. 120 725
	29.8	Winimizing the Bit Error Kate	. 120 700
	29.9		129 721
	29.10	System Parameters	・134 フクロ
	29.11	Hard vs. Soft Decisions	. 133 725
	29.12	The varshamov and Singleton Bounds	. 133

	29.13 29.14	Additional Reading	736 737	
30	The R 30.1 30.2 30.3 30.4 30.5 30.6 30.7 30.8 30.9 30.10 30.11 30.12 30.13 30.14	Radar ProblemThe SetupThe Radar and the Knapsack ProblemsPareto-Optimality and Linear FunctionalsOne Type of Error Is Not AllowedLikelihood-Ratio TestsA Gaussian ExampleDetecting a Signal in White Gaussian NoiseSufficient StatisticsA Noncoherent Detection ProblemRandomization Is Not NeededThe Big PictureRelative EntropyAdditional ReadingExercises	740 746 747 748 751 759 760 762 763 768 772 776 781 781	
31	A Glir 31.1 31.2 31.3 31.4 31.5 31.6	npse at Discrete-Time Signal Processing Discrete-Time Filters Processing Discrete-Time Stochastic Processes Discrete-Time Whitening Filters Processing Discrete-Time Complex Processes Additional Reading Exercises	786 786 789 794 797 801 801	
32	Inters 32.1 32.2 32.3 32.4 32.5 32.6 32.7	ymbol InterferenceThe Linearly-Dispersive ChannelPAM on the ISI ChannelGuessing the Data BitsQAM on the ISI ChannelFrom Passband to BasebandAdditional ReadingExercises	803 803 803 807 818 823 827 828	
Α	On th A.1 A.2 A.3 A.4	e Fourier Series Introduction and Preliminaries	830 830 832 835 839	
В	On th	e Discrete-Time Fourier Transform	841	
С	Positiv	ve Definite Functions	845	
D	The B	aseband Representation of Passband Stochastic Processes	848	
Bib	Bibliography 858			

Contents	XV
Theorems Referenced by Name	864
Abbreviations	865
List of Symbols	866
Index	875