Collision Phenomena in Liquids and Solids

ALEXANDER L. YARIN

University of Illinois, Chicago, U.S.A.

ILIA V. ROISMAN Technische Universität, Darmstadt, Germany

CAMERON TROPEA Technische Universität, Darmstadt, Germany

Contents

Preface

1

2

Preface		<i>page</i> xi	
Intro	duction	1	
1.1	History and Outlook	2	
1.2	Dimensionless Groups	5	
1.3	Mass and Momentum Balance Equations	7	
1.4	Inviscid and Viscous Newtonian Fluids: The Incompressible Euler	0	
15	and Navier-Stokes Equations	9	
1.5	Impact at Liquid Surface and Equations of Impulsive Motion	12	
1.0	Boundary Layer Equations	13	
1./	Quasi-one-dimensional and Lubrication Approximations in Problems	1.5	
10	Wettebility	15	
1.0	Pheological Constitutive Equations of Non-Newtonian Eluida	19	
1.9	and Solids	22	
1 10	Instabilities and Small Perturbations: Pauleigh Capillary	22	
1.10	Instability Bending Instability Kelvin, Helmholtz Instability		
	Rayleigh-Taylor Instability	20	
1 1 1	Total Mechanical Energy of Deforming Bodies: Where Is It Lost?	29	
1.12	References	39	
Selec	ted Basic Flows and Forces	44	
2.1	Inviscid Flow in a Thin Film on a Wall	44	
2.2	Propagation of Kinematic Discontinuity	52	
2.3	External Irrotational Flows About Blunt Bodies	58	
2.4	Flows Past Arbitrary Axisymmetric Bodies of Revolution	61	
2.5	Transient Motion in Inviscid Fluids and Forces Associated with the		
	Added Masses	63	
2.6	Friction and Shape Drag	70	
2.7	Dynamics of a Rim Bounding a Free Liquid Sheet	75	
2.8	References	82	

Part I Collision of Liquid Jets and Drops with a Dry Solid Wall

3	Jet Ir	npact onto a Solid Wall	87	
	3.1	Normal and Inclined Impact of Inviscid Planar Jets onto a Plane Wall	87	
	3.2	Normal Impact of Axisymmetric Impinging Jet	91	
	3.3	Hydraulic Jump	96	
	3.4	References	98	
4	Drop	Impact onto a Dry Solid Wall	100	
	4.1 4 2	Inviscid Flow on a Wall Generated by Inertia-Dominated Drop Impact Flow in a Spreading Viscous Drop Including Description of Inclined	102	
	7.2	Impact and Thermal Effects	106	
	4.3	Initial Phase of Drop Impact	120	
	4.4	Maximum Spreading Diameter	123	
	4.5	Time Evolution of the Drop Diameter: Rim Dynamics on a Wall	126	
	4.6	Drop Impact onto Spherical Targets and Encapsulation	128	
	4.7	Outcomes of Drop Impact onto a Dry Wall	130	
	4.8	The Effect of Reduced Pressure of the Surrounding Gas	133	
	4.9	Drop Impact onto Hot Rigid Surfaces	134	
	4.10	Drop Impact with Solidification and Icing	140	
	4.11	References	149	
5	Drop Impact onto Dry Surfaces with Complex Morphology			
	5.1	Drop Splashing on Rough and Textured Surfaces	156	
	5.2	Drop Impact Close to a Pore	159	
	5.3	Drop Impact onto Porous Surfaces	165	
	5.4	Nano-textured Surfaces: Drop Impact onto Suspended		
		Nanofiber Membranes	177	
	5.5	Drop Impact onto Nanofiber Mats on Impermeable Substrates and		
		Suppression of Splashing	186	
	5.6	Hydrodynamic Focusing in Drop Impact onto Nanofiber Mats		
	c 7	and Membranes	189	
	5.7	Impact of Aqueous Suspension Drops onto Non-Wettable		
		Porous Membranes: Hydrodynamic Focusing and Penetration		
	E 0	OI INANOPARTICIES	200	
	5.8 5.0	None textured Surfaces Control by Nanofiber Mats	214	
	5.9 5.10	Nano-iextured Surfaces: Suppression of the Leidenfrost Effect	223	
	5.10	Beferences	231	
	5.11		247	

Part II Drop Impacts onto Liquid Surfaces

6	Drop	Impacts with Liquid Pools and Layers	255
	6.1	Drop Impact onto Thin Liquid Layer on a Wall: Weak Impacts and	
		Self-similar Capillary Waves	255
	6.2	Strong Impacts of Drops onto Thin Liquid Layer: Crown Formation	257
	6.3	Drop Impact onto Thick Liquid Layers on a Wall: Cavity Expansion	273
	6.4	Residual Film Thickness	283
	6.5	Drop Impact onto a Deep Liquid Pool: Crater and Crown Formation,	
		the Worthington Jets and Bubble Entrapment	287
	6.6	Bending Instability of a Free Viscous Rim on Top of the Crown:	
		Mechanism of Splash	293
	6.7	Impact of Drop Train	310
	6.8	References	315
Part III Sp	oray F	ormation and Impact onto Surfaces	
	-	•	

7	Drop	and Spray Diagnostics	323
	7.1	Fundamentals	323
	7.2	Non-Optical Measurement Techniques	329
	7.3	Direct Imaging	330
	7.4	Non-Imaging Optical Measurement Techniques	340
	7.5	Measurement Techniques for Liquid Films	347
	7.6	References	350
8	Atomization and Spray Formation		
	8.1	Primary Atomization	355
	8.2	Secondary Aerodynamic Breakup	366
	8.3	Drop-Drop Binary Collisions in Sprays	377
	8.4	Secondary Drop Detachment from a Filament	391
	8.5	Secondary Electrically Driven Drop Breakup: The Rayleigh Limit	401
	8.6	References	406
9	Spray Impact		
	9.1	Spray Impact onto Liquid Films	417
	9.2	Description of the Secondary Spray	440
	9.3	Correlations for Spray Impact Phenomena	462
	9.4	References	467

Part IV Collisions of Solid Bodies with Liquid

10	Rigic	I Body Collision with Liquid Surface	473
	10.1 10.2 10.3 10.4	Impact of Rigid Body at Liquid Surface Rigid Body Entry and Penetration into Liquid: The Wagner Problem Rigid Sphere Entry and Penetration into Liquid References	473 478 482 485
11	Parti	cle Impact onto Wetted Wall	487
	11.1 11.2 11.3 11.4 11.5	Motion of a Rigid Immersed Particle near a Wall Deformation of an Immersed Elastic Particle Restitution Coefficient Effect of Particle Material and Surface Properties References	487 489 491 493 495
Part V	Solid–So	olid Collisions	
12	Parti	cle and Long Bar Impact onto a Rigid Wall	499
	12.1	Relatively Weak and Strong Impacts, the Split Hopkinson Pressure Bar: Propagation of Elastic Waves in Long Rods – Inertial Effects and Anelastic Material Properties. Strong Impacts and Irreversible	
	10.0	Plastic Effects	499
	12.2	Impingement of a Rigid/Semi-Brittle Ice Particle	506
	12.5	Kelerences	513
13	Shap	ed-charge (Munroe) Jets and Projectile Penetration	515
	13.1	Shaped-charge Jet Penetration Depth	515
	13.2	Crater Configuration due to Shaped-charge Jet Penetration	517
	13.3	Normal Penetration of an Eroding Projectile into an	
	12.4	Elastic–Plastic Target	521
	13.4	High-Speed Penetration	542
	13.5	Normal and Oblique Penetration of a Digid Projectile	544
	10.0	an Elastic–Plastic Target	545
	13.7	Explosion Welding	553
	13.8	References	564
14	Fragn	nentation	566
	14.1	Ice Particle Collision with a Dry Solid Wall	566
	14.2	Ice Particle: Fragmentation Threshold for an Impact Velocity	570
	14.3	Dynamic Fracture of a Deforming Elastic-Plastic Material	573

ix

14.4	Fragmentation of Thick Elastic–Plastic Targets	577
14.5	Fragmentation of an Impacting Projectile	587
14.6	Debris Cloud Produced by Projectile Impact, Vulnerability	590
14.7	Effect of the Energy of the Plastic Dissipation on the Size of the	
	Smallest Fragment	598
14.8	References	599
Index		604