

Optimization Methods in Finance

Second Edition

GÉRARD CORNUÉJOLS

Carnegie Mellon University, Pennsylvania

JAVIER PEÑA

Carnegie Mellon University, Pennsylvania

REHA TÜTÜNCÜ

SECOR Asset Management

CAMBRIDGE
UNIVERSITY PRESS

Contents

Preface page xi

Part I	Introduction	1
1	Overview of Optimization Models	3
1.1	Types of Optimization Models	4
1.2	Solution to Optimization Problems	7
1.3	Financial Optimization Models	8
1.4	Notes	10
2	Linear Programming: Theory and Algorithms	11
2.1	Linear Programming	11
2.2	Graphical Interpretation of a Two-Variable Example	15
2.3	Numerical Linear Programming Solvers	16
2.4	Sensitivity Analysis	17
2.5	*Duality	20
2.6	*Optimality Conditions	23
2.7	*Algorithms for Linear Programming	24
2.8	Notes	30
2.9	Exercises	31
3	Linear Programming Models: Asset–Liability Management	35
3.1	Dedication	35
3.2	Sensitivity Analysis	38
3.3	Immunization	38
3.4	Some Practical Details about Bonds	41
3.5	Other Cash Flow Problems	44
3.6	Exercises	47
3.7	Case Study	51
4	Linear Programming Models: Arbitrage and Asset Pricing	53
4.1	Arbitrage Detection in the Foreign Exchange Market	53
4.2	The Fundamental Theorem of Asset Pricing	55
4.3	One-Period Binomial Pricing Model	56

4.4	Static Arbitrage Bounds	59
4.5	Tax Clientele Effects in Bond Portfolio Management	63
4.6	Notes	65
4.7	Exercises	65
Part II	Single-Period Models	69
5	Quadratic Programming: Theory and Algorithms	71
5.1	Quadratic Programming	71
5.2	Numerical Quadratic Programming Solvers	74
5.3	Sensitivity Analysis	75
5.4	*Duality and Optimality Conditions	76
5.5	*Algorithms	81
5.6	Applications to Machine Learning	84
5.7	Exercises	87
6	Quadratic Programming Models: Mean–Variance Optimization	90
6.1	Portfolio Return	90
6.2	Markowitz Mean–Variance (Basic Model)	91
6.3	Analytical Solutions to Basic Mean–Variance Models	95
6.4	More General Mean–Variance Models	99
6.5	Portfolio Management Relative to a Benchmark	103
6.6	Estimation of Inputs to Mean–Variance Models	106
6.7	Performance Analysis	112
6.8	Notes	115
6.9	Exercises	115
6.10	Case Studies	121
7	Sensitivity of Mean–Variance Models to Input Estimation	124
7.1	Black–Litterman Model	126
7.2	Shrinkage Estimation	129
7.3	Resampled Efficiency	131
7.4	Robust Optimization	132
7.5	Other Diversification Approaches	133
7.6	Exercises	135
8	Mixed Integer Programming: Theory and Algorithms	140
8.1	Mixed Integer Programming	140
8.2	Numerical Mixed Integer Programming Solvers	143
8.3	Relaxations and Duality	145
8.4	Algorithms for Solving Mixed Integer Programs	150
8.5	Exercises	157

9	Mixed Integer Programming Models: Portfolios with Combinatorial Constraints	161
9.1	Combinatorial Auctions	161
9.2	The Lockbox Problem	163
9.3	Constructing an Index Fund	165
9.4	Cardinality Constraints	167
9.5	Minimum Position Constraints	168
9.6	Risk-Parity Portfolios and Clustering	169
9.7	Exercises	169
9.8	Case Study	171
10	Stochastic Programming: Theory and Algorithms	173
10.1	Examples of Stochastic Optimization Models	173
10.2	Two-Stage Stochastic Optimization	174
10.3	Linear Two-Stage Stochastic Programming	175
10.4	Scenario Optimization	176
10.5	*The L-Shaped Method	177
10.6	Exercises	179
11	Stochastic Programming Models: Risk Measures	181
11.1	Risk Measures	181
11.2	A Key Property of CVaR	185
11.3	Portfolio Optimization with CVaR	186
11.4	Notes	190
11.5	Exercises	190
Part III	Multi-Period Models	195
12	Multi-Period Models: Simple Examples	197
12.1	The Kelly Criterion	197
12.2	Dynamic Portfolio Optimization	198
12.3	Execution Costs	201
12.4	Exercises	209
13	Dynamic Programming: Theory and Algorithms	212
13.1	Some Examples	212
13.2	Model of a Sequential System (Deterministic Case)	214
13.3	Bellman's Principle of Optimality	215
13.4	Linear-Quadratic Regulator	216
13.5	Sequential Decision Problem with Infinite Horizon	218
13.6	Linear-Quadratic Regulator with Infinite Horizon	219
13.7	Model of Sequential System (Stochastic Case)	221
13.8	Notes	222
13.9	Exercises	222

14	Dynamic Programming Models: Multi-Period Portfolio Optimization	225
14.1	Utility of Terminal Wealth	225
14.2	Optimal Consumption and Investment	227
14.3	Dynamic Trading with Predictable Returns and Transaction Costs	228
14.4	Dynamic Portfolio Optimization with Taxes	230
14.5	Exercises	234
15	Dynamic Programming Models: the Binomial Pricing Model	238
15.1	Binomial Lattice Model	238
15.2	Option Pricing	238
15.3	Option Pricing in Continuous Time	244
15.4	Specifying the Model Parameters	245
15.5	Exercises	246
16	Multi-Stage Stochastic Programming	248
16.1	Multi-Stage Stochastic Programming	248
16.2	Scenario Optimization	250
16.3	Scenario Generation	255
16.4	Exercises	259
17	Stochastic Programming Models: Asset–Liability Management	262
17.1	Asset–Liability Management	262
17.2	The Case of an Insurance Company	263
17.3	Option Pricing via Stochastic Programming	265
17.4	Synthetic Options	270
17.5	Exercises	273
Part IV	Other Optimization Techniques	275
18	Conic Programming: Theory and Algorithms	277
18.1	Conic Programming	277
18.2	Numerical Conic Programming Solvers	282
18.3	Duality and Optimality Conditions	282
18.4	Algorithms	284
18.5	Notes	287
18.6	Exercises	287
19	Robust Optimization	289
19.1	Uncertainty Sets	289
19.2	Different Flavors of Robustness	290
19.3	Techniques for Solving Robust Optimization Models	294
19.4	Some Robust Optimization Models in Finance	297
19.5	Notes	302
19.6	Exercises	302

20	Nonlinear Programming: Theory and Algorithms	305
20.1	Nonlinear Programming	305
20.2	Numerical Nonlinear Programming Solvers	306
20.3	Optimality Conditions	306
20.4	Algorithms	308
20.5	Estimating a Volatility Surface	315
20.6	Exercises	319
Appendices		321
Appendix	Basic Mathematical Facts	323
A.1	Matrices and Vectors	323
A.2	Convex Sets and Convex Functions	324
A.3	Calculus of Variations: the Euler Equation	325
References		327
Index		334