PRINCIPLES OF NEUROBIOLOGY

LIQUN LUO

CONTENTS

Chap	oter 1	
An li	nvitation to Neurobiology	1
	IRE AND NURTURE IN BRAIN	
	TION AND BEHAVIOR	1
1.1	Human twin studies can reveal the contributions of nature and nurture	1
1.2	Examples of nature: Animals exhibit instinctive behaviors	3
1.3	An example of nurture: Barn owls adjust their auditory map to match an altered visual map	4
	IS THE NERVOUS SYSTEM	6
1.4	The nervous system consists of neurons and glia	7
1.5	Individual neurons were first visualized by Golgi staining in the late nineteenth century	8
1.6	Twentieth-century technology confirmed the neuron doctrine	10
1.7	In vertebrate neurons, information generally flows from dendrites to cell bodies to axons	11
1.8	Neurons use membrane potential changes and neurotransmitter release to transmit information	13
1.9	Neurons function in the context of specific neural circuits	15
1.10	Specific brain regions perform specialized functions	18
1.11	The brain uses maps to organize information	19
1.12	The brain is a massively parallel computational device	21
GENI	ERAL METHODOLOGY	23
1.13	Observations and measurements are the foundations for discovery	23
1.14	Perturbation experiments establish causes and mechanisms	24
SUMI	MARY	25
FURT	HER READING	25
	pter 2 aling within Neurons	27
-	BIOLOGICAL AND ELECTRICAL	-/
	PERTIES OF NEURONS Neurons follow the central dogma of	28
۷.۱	molecular biology and rules of intracellular vesicle trafficking	28

2.2	While some dendritic and axonal proteins are synthesized from mRNAs locally, most are actively transported from the soma	30
2.3	The cytoskeleton forms the basis of neuronal polarity and directs intracellular trafficking	32
2.4	Channels and transporters move solutes passively or actively across neuronal membranes	34
2.5	Neurons are electrically polarized at rest because of ion concentration differences across the plasma membrane and differential ion permeability	38
2.6	Neuronal plasma membrane can be described in terms of electrical circuits	40
2.7	Electrical circuit models can be used to analyze ion flows across glial and neuronal plasma membrane	43
2.8	Passive electrical properties of neurons: electrical signals evolve over time and decay across distance	44
2.9	Active electrical properties of neurons: depolarization above a threshold produces action potentials	47
PROF	DO ELECTRICAL SIGNALS PAGATE FROM THE NEURONAL BODY TO ITS AXON TERMINALS?	49
2.10	Action potentials are initiated by depolarization-induced inward flow of Na ⁺	49
2.11	Sequential, voltage-dependent changes in Na ⁺ and K ⁺ conductances account for action potentials	50
2.12	Action potentials are all-or-none, are regenerative, and propagate unidirectionally in the axon	52
2.13	Action potentials propagate more rapidly in axons with larger diameters and in myelinated axons	53
2.14	Patch clamp recording enables the study of current flow across individual ion channels	57
2.15	Cloning of genes that encode ion channels allows their structure-function relationship to be studied	59
2.16	Crystal structures reveal the atomic bases of ion channel properties	62
SUM	MARY	65
FURT	HER READING	66

Chapter 3 69 Signaling across Synapses HOW IS NEUROTRANSMITTER RELEASE CONTROLLED AT THE PRESYNAPTIC 69 **TERMINAL?** Action potential arrival at the presynaptic 3.1 terminal triggers neurotransmitter release 69 Neurotransmitters are released in 3.2 70 discrete packets Neurotransmitters are released when 3.3 synaptic vesicles fuse with the presynaptic 72 plasma membrane Neurotransmitter release is controlled by 3.4 74 Ca²⁺ entry into the presynaptic terminal SNARE and SM proteins mediate synaptic 3.5 75 vesicle fusion Synaptotagmin serves as a Ca²⁺ sensor 3.6 to trigger synaptic vesicle fusion 78 The presynaptic active zone is a highly 3.7 79 organized structure 3.8 Neurotransmitters are efficiently cleared from the synaptic cleft by enzymatic cleavage or transport into presynaptic 80 and glial cells 3.9 Synaptic vesicle recycling by endocytosis is essential for continual synaptic 81 transmission Synapses can be facilitating or depressing 83 3.10 The nervous system uses many 3.11 85 neurotransmitters HOW DO NEUROTRANSMITTERS ACT ON POSTSYNAPTIC NEURONS? 87 3.12 Acetylcholine opens a nonselective cation channel at the neuromuscular 88 junction 3.13 The skeletal muscle acetylcholine receptor is a ligand-gated ion channel 90

Neurotransmitter receptors are 3.14 91 ionotropic or metabotropic 3.15 AMPA and NMDA glutamate receptors are activated by glutamate under different conditions 93 The postsynaptic density is organized 3.16 by scaffolding proteins 95 Ionotropic GABA and glycine receptors 3.17 are CI⁻ channels that mediate inhibition 96 3.18 All metabotropic neurotransmitter 99 receptors trigger G protein cascades 3.19 A GPCR signaling paradigm: β -adrenergic receptors activate cAMP as a second 100 messenger 3.20 α and $\beta\gamma$ G protein subunits trigger diverse signaling pathways that alter membrane conductance 102

3.21	Metabotropic receptors can act on the presynaptic terminal to modulate neurotransmitter release	104
3.22	GPCR signaling features multiple mechanisms of signal amplification and termination	106
3.23	Postsynaptic depolarization can induce new gene expression	106
3.24	Dendrites are sophisticated integrative devices	110
3.25	Synapses are strategically placed at specific locations in postsynaptic neurons	113
SUMMARY		116
FURTHER READING		118

Chapter 4

4.11

4.12

Visic	on	121
HOW DO RODS AND CONES DETECT LIGHT SIGNALS?		121
4.1	Psychophysical studies revealed that human rods can detect single photons	122
4.2	Electrophysiological studies identified the single-photon response of rods: light hyperpolarizes vertebrate	
	photoreceptors	123
4.3	Light activates rhodopsin, a prototypical G-protein-coupled receptor	124
4.4	Photon-induced signals are greatly amplified by a transduction cascade	125
4.5	Light-triggered decline of cyclic-GMP level directly leads to the closure of cation channels	126
4.6	Recovery enables the visual system to respond to light continually	127
4.7	Adaptation enables the visual system to detect contrast over a wide range of	129
	light levels	129
4.8	Cones are concentrated in the fovea for high-acuity vision	130
4.9	Cones are less sensitive but faster than rods	131
4.10	Photoreceptors with different spectral sensitivities are needed to sense color	132

	the molecular basis of color detection	134
4.13	Defects in cone opsin genes cause human color blindness	135
HOW	ARE SIGNALS FROM RODS AND	
CON	ES ANALYZED IN THE RETINA?	135
1 11	Rotinal ganglion colls use conter surround	

Cloning of the cone opsin genes revealed

Humans have three types of cones

133

Retinal ganglion cells use center-surround 136 receptive fields to analyze contrast

4.15	Bipolar cells are either depolarized or hyperpolarized by light based on the glutamate receptors they express	137
4.16	Lateral inhibition from horizontal cells constructs the center-surround receptive fields	138
4.17	Diverse retinal cell types and their precise connections enable parallel information processing	140
4.18	Direction-selectivity of RGCs arises from asymmetric inhibition by amacrine cells	142
4.19	Color is sensed by comparing signals from cones with different spectral sensitivities	143
4.20	The same retinal cells and circuits can be used for different purposes	145
	IS INFORMATION PROCESSED	146
4.21	Retinal information is topographically represented in the lateral geniculate nucleus and visual cortex	146
4.22	Receptive fields of LGN neurons are similar to those of RGCs	148
4.23	Primary visual cortical neurons respond to lines and edges	149
4.24	How do visual cortical neurons acquire their receptive fields?	150
4.25	Cells with similar properties are vertically organized in the visual cortex	151
4.26	Information generally flows from layer 4 to layers 2/3 and then to layers 5/6 in the neocortex	154
4.27	Visual information is processed in parallel streams	157
4.28	Face recognition cells form a specialized network in the primate temporal cortex	159
4.29	Linking perception to decision and action: microstimulation of MT neurons biased motion choice	160
SUM	MARY	163
FURT	HER READING	164
	pter 5	
	ing of the Visual System	167
	V DO RETINAL GANGLION CELL NS FIND THEIR TARGETS?	167
5.1	Optic nerve regeneration experiments suggested that RGC axons are predetermined for wiring	168
5.2	Point-to-point connections between retina and tectum arise by chemoaffinity	169

The posterior tectum repels temporal retinal axons

5.3

5.4	Gradients of ephrins and Eph receptors instruct retinotectal mapping	172
5.5	A single gradient is insufficient to specify an axis	174
5.6	To cross, or not to cross: that is the question	178
	OO EXPERIENCE AND NEURONAL	180
5.7	Monocular deprivation markedly impairs visual cortex development	180
5.8	Competing inputs are sufficient to produce spatial segregation at the target	182
5.9	Ocular dominance columns in V1 and eye-specific layers in LGN develop by gradual segregation of eye-specific inputs	183
5.10	Retinal neurons exhibit spontaneous waves of activity before the onset of vision	184
5.11	Retinal waves and correlated activity drive segregation of eye-specific inputs	185
5.12	Hebb's rule: correlated activity strengthens synapses	187
5.13	A Hebbian molecule: the NMDA receptor acts as a coincidence detector	189
AND	/ DO MOLECULAR DETERMINANTS NEURONAL ACTIVITY WORK ETHER?	190
5.14	Ephrins and retinal waves act in parallel to establish the precise retinocollicular map	192
5.15	Ephrins and retinal waves also work together to establish the retinotopic map in the visual cortex	193
5.16	Different aspects of visual system wiring rely differentially on molecular cues and neuronal activity	195
VISUAL SYSTEM DEVELOPMENT IN DROSOPHILA: LINKING CELL FATE TO WIRING SPECIFICITY 1		197
5.17	Cell–cell interactions determine photoreceptor cell fates: R7 as an example	198
5.18	Multiple parallel pathways participate in layer-specific targeting of R8 and R7 axons	201
SUM	MARY	203
FUR	THER READING	204
Chapter 6 Olfaction, Taste, Audition,		

Olfaction, Taste, Audition, and Somatosensation		
HOW	DO WE SENSE ODORS?	207
6.1	Odorant binding leads to opening of a cyclic nucleotide-gated channel in olfactory receptor neurons	208

171

6.2	Ca ²⁺ coordinates olfactory recovery and adaptation	210
6.3	Odorants are represented by combinatorial activation of olfactory receptor neurons	210
6.4	Odorant receptors are encoded by many hundreds of genes in mammals	210
6.5	Polymorphisms in odorant receptor genes contribute to individual differences in odor perception	213
6.6	Each olfactory receptor neuron (ORN) expresses a single odorant receptor	214
6.7	ORNs expressing a given odorant receptor are broadly distributed in the nose	214
6.8	ORNs expressing the same odorant receptor project their axons to the same glomerulus	215
6.9	Olfactory bulb circuits transform odor representation through lateral inhibition	217
6.10	Olfactory inputs are differentially organized in distinct cortical areas	218
HOW ODO	DO WORMS AND FLIES SENSE RS?	222
6.11	C. <i>elegans</i> encodes olfactory behavioral choices at the sensory neuron level	223
6.12	C. <i>elegans</i> sensory neurons are activated by odorant withdrawal and engage ON- and OFF-pathways	224
6.13	The olfactory systems in insects and mammals share many similarities	225
6.14	The antennal lobe transforms ORN input for more efficient representation by projection neurons	226
6.15	Odors with innate behavioral significance use dedicated olfactory processing channels	230
6.16	Odor representation in higher centers is stereotyped or stochastic depending on whether the center directs innate or learned behavior	231
TAST	E: TO EAT, OR NOT TO EAT?	232
6.17	Mammals have five classic taste modalities: sweet, bitter, umami, salty, and sour	233
6.18	Sweet and umami are sensed by heterodimers of the T1R family of G-protein-coupled receptors	233
6.19	Bitter is sensed by a family of ~30 T2R G-protein-coupled receptors	234
6.20	Sour and salty tastes involve specific ion channels	236
6.21	Activation of specific taste receptor cells confers specific taste perceptions	236

	ITION: HOW DO WE HEAR LOCALIZE SOUNDS?	238
6.22	Sounds are converted to electrical signals by mechanically gated ion	230
	channels in the stereocilia of hair cells	239
6.23	Sound frequencies are represented as a tonotopic map in the cochlea	240
6.24	Motor properties of outer hair cells amplify auditory signals and sharpen frequency tuning	243
6.25	Auditory signals are processed by multiple brainstem nuclei before reaching the cortex	245
6.26	In the owl, sound location is determined by comparing the timing and levels of sounds reaching two ears	246
6.27	Mechanisms of sound location in mammals differ from those in the owl	249
6.28	The auditory cortex analyzes complex and biologically important sounds	250
SOM	ATOSENSATION: HOW DO WE	
	SE BODY MOVEMENT, TOUCH, PERATURE, AND PAIN?	255
6.29	Many types of sensory neurons are used	255
(to encode diverse somatosensory stimuli	257
6.30	Merkel cells and some touch sensory neurons employ Piezo2 as a mechanotransduction channel	259
6.31	TRP channels are major contributors to temperature, chemical, and pain sensation	262
6.32	Sensation can be a product of central	202
	integration: the distinction of itch and pain as an example	264
6.33	Touch and pain signals are transmitted by parallel pathways to the brain	266
6.34	Pain is subjected to peripheral and central modulation	268
6.35	Linking neuronal activity with touch perception: from sensory fiber to cortex	269
SUMMARY		272
FURTHER READING		273
Chapter 7		
Wir	ing of the Nervous System	277

	5	
HOW	DOES WIRING SPECIFICITY ARISE	
IN TH	IE DEVELOPING NERVOUS SYSTEM?	278
7.1	The nervous system is highly patterned as a consequence of early developmental events	278
7.2	Orderly neurogenesis and migration produce many neuronal types that occupy specific positions	280

7.3	Cell fates are diversified by asymmetric cell division and cell-cell interactions	281
7.4	Transcriptional regulation of guidance molecules links cell fate to wiring decision	283
7.5	Crossing the midline: Combinatorial actions of guidance receptors specify axon trajectory choice	286
7.6	Crossing the midline: Axons switch responses to guidance cues at intermediate targets	288
7.7	The cell polarity pathway participates in determining whether a neuronal process becomes an axon or a dendrite	290
7.8	Local secretory machinery is essential for dendrite morphogenesis and microtubule organization	292
7.9	Homophilic repulsion enables self-avoidance of axonal and dendritic branches	293
7.10	Subcellular site selection of synaptogenesis uses both attractive and repulsive mechanisms	295
7.11	Bidirectional trans-synaptic communication directs the assembly of synapses	297
7.12	Astrocytes stimulate synapse formation and maturation	299
7.13	Activity and competition refine neuromuscular connectivity	300
7.14	Developmental axon pruning refines wiring specificity	301
7.15	Neurotrophins from target cells support the survival of sensory, motor, and sympathetic neurons	302
	MBLY OF OLFACTORY CIRCUITS:	
	DO NEURAL MAPS FORM?	305
7.16	Neural maps can be continuous, discrete, or a combination of the two	305
7.17	In mice, odorant receptors instruct ORN axon targeting by regulating expression of guidance molecules	307
7.18	ORN axons sort themselves by repulsive interactions before reaching their target	309
7.19	Activity-dependent regulation of adhesion and repulsion refines glomerular targeting	310
7.20	<i>Drosophila</i> projection neurons' lineage and birth order specify the glomeruli that their dendrites target	312
7.21	Graded determinants and discrete molecular labels control the targeting of projection neuron dendrites	313
7.22	Sequential interactions among ORN axons limit their target choice	314
7.23	Homophilic matching molecules instruct connection specificity between synaptic partners	315

	DO ~20,000 GENES SPECIFY 10 ¹⁴	24/
7.24	Some genes can produce many protein variants	316 316
7.25	Protein gradients can specify different connections	318
7.26	The same molecules can serve multiple functions	318
7.27	The same molecules can be used at multiple times and places	318
7.28	Combinatorial use of wiring molecules can reduce the number of wiring molecules needed	319
7.29	Dividing wiring decisions into multiple steps can conserve molecules and increase fidelity	319
7.30	Many connections do not need to be specified at the level of individual synapses or neurons	320
7.31	Wiring can be instructed by neuronal activity and experience	320
SUMN	ARY	321
FURT	HER READING	322

Chapter 8 Motor and Regulatory Systems 325

HOW	IS MOVEMENT CONTROLLED?	326
8.1	Muscle contraction is mediated by sliding of actin and myosin filaments and is regulated by intracellular Ca ²⁺	326
8.2	Motor units within a motor pool are recruited sequentially from small to large	329
8.3	Motor neurons receive diverse and complex input	330
8.4	Central pattern generators coordinate rhythmic contraction of muscles during locomotion	332
8.5	Intrinsic properties of neurons and their connection patterns produce rhythmic output in a model central pattern generator	334
8.6	The spinal cord uses multiple central pattern generators to control locomotion	336
8.7	The brainstem contains specific motor control nuclei	338
8.8	The cerebellum is required for fine control of movement	340
8.9	The basal ganglia participate in initiation and selection of motor programs	343
8.10	Voluntary movement is controlled by the population activity of motor cortical neurons in a dynamical system	346

8.11	Population activity of motor cortical neurons can be used to control neural prosthetic devices	349
	/ DOES THE BRAIN REGULATE THE CTIONS OF INTERNAL ORGANS?	351
8.12	The sympathetic and parasympathetic systems play complementary roles in regulating body physiology	351
8.13	The autonomic nervous system is a multilayered regulatory system	353
8.14	The hypothalamus regulates diverse basic body functions via homeostasis and hormone secretion	354
ном	/ IS EATING REGULATED?	356
8.15	Hypothalamic lesion and parabiosis experiments suggested that eating is inhibited by a negative feedback signal	05/
0.47	from the body	356
8.16	Studies of mouse mutants led to the discovery of the leptin feedback signal from adipose tissues	357
8.17	POMC and AgRP neurons in the arcuate nucleus are central regulators of eating	358
8.18	Multiple feedback signals and neural pathways act in concert to regulate eating	360
HOW	ARE CIRCADIAN RHYTHMS	
	SLEEP REGULATED?	362
8.19	Circadian rhythms are driven by an auto- inhibitory transcriptional feedback loop that is conserved from flies to mammals	362
8.20	Entrainment in flies is accomplished by light-induced degradation of circadian rhythm regulators	365
8.21	Pacemaker neurons in the mammalian suprachiasmatic nucleus integrate input and coordinate output	366
8.22	Sleep is widespread in the animal kingdom and exhibits characteristic electroencephalogram patterns in mammals	367
8.23	The mammalian sleep–wake cycle is regulated by multiple neurotransmitter and neuropeptide systems	
8.24	Why do we sleep?	369 372
SUM		374
	HER READING	375
-	oter 9	
	al Behavior	377
	DO GENES SPECIFY SEXUAL VIOR IN THE FLY?	378
9.1	Drosophila courtship follows a stereotyped ritual that is instinctive	378

9.2	<i>Fruitless</i> (Fru) is essential for many aspects of sexual behavior	379
9.3	A sex-determination hierarchy specifies sex-specific splicing of <i>Fru</i> that produces male-specific Fru ^M	379
9.4	Expression of Fru ^M in females is sufficient to produce most aspects of male courtship behavior	380
9.5	Activity of Fru ^M neurons promotes male courtship behavior	381
9.6	Fru ^M sensory neurons process mating-related sensory cues	382
9.7	Fru ^M central neurons integrate sensory information and coordinate the behavioral sequence	384
9.8	Fru ^M neurons in the ventral nerve cord regulate mating-related behavioral output	385
9.9	Fru ^M -equivalent neurons in females promote female receptivity to courtship	386
9.10	Fru ^M and Doublesex (Dsx) regulate sexually dimorphic programmed cell death	386
9.11	Dsx and Fru ^M control sexually dimorphic neuronal wiring	389
9.12	Even innate behavior can be modified by experience	390
	/ ARE MAMMALIAN SEXUAL AVIORS REGULATED?	390
9.13	The <i>Sry</i> gene on the Y chromosome determines male differentiation via testosterone production	393
9.14	Testosterone and estradiol are the major sex hormones	393
9.15	Early exposure to testosterone causes females to exhibit male-typical sexual behavior	395
9.16	Testosterone exerts its organizational effect mainly through the estrogen receptors in rodents	396
9.17	Dialogues between the brain and gonads initiate sexual maturation at puberty and maintain sexual activity in adults	396
9.18	Sex hormones specify sexually dimorphic neuronal numbers by regulating programmed cell death	398
9.19	Sex hormones also regulate sexually dimorphic neuronal connections	399
9.20	Sexually dimorphic nuclei define neural pathways from olfactory systems to the hypothalamus	400
9.21	Whereas the main olfactory system is essential for mating, the accessory olfactory system discriminates sex	
9.22	partners in mice The same neuronal population can control	401
	multiple behaviors in females and males	402

9.23	Parental behavior is activated by mating and regulated by specific populations of hypothalamic neurons	405
9.24	Two neuropeptides, oxytocin and vasopressin, regulate pair bonding and parental behavior	407
SUMN	/ARY	410

412
41

Chapter 10 Memory, Learning, and Synaptic Plasticity

Plas	ticity	415
	UDE: WHAT IS MEMORY, AND HOW ACQUIRED BY LEARNING?	415
10.1	Memory can be explicit or implicit, short-term, or long-term: Insights from amnesic patients	415
10.2	Hypothesis I: Memory is stored as strengths of synaptic connections in neural circuits	417
10.3	Hypothesis II: Learning modifies the strengths of synaptic connections	420
	IS SYNAPTIC PLASTICITY EVED?	420
10.4	Long-term potentiation (LTP) of synaptic efficacy can be induced by high-frequency stimulation	421
10.5	LTP at the hippocampal CA3 \rightarrow CA1 synapse exhibits input specificity, cooperativity, and associativity	421
10.6	The NMDA receptor is a coincidence detector for LTP induction	423
10.7	Recruitment of AMPA receptors to the postsynaptic surface is the predominant mechanism of LTP expression	423
10.8	CaMKII auto-phosphorylation creates a molecular memory that links LTP induction and expression	425
10.9	Long-term depression weakens synaptic efficacy	426
10.10	Spike-timing-dependent plasticity can adjust synaptic efficacy bidirectionally	428
10.11	Dendritic integration in the postsynaptic neuron also contributes to synaptic plasticity	428
10.12	Postsynaptic cells can produce retrograde messengers to regulate neurotransmitter release by their presynaptic partners	429
10.13	Long-lasting changes of connection strengths involve formation of new synapses	431

WHA	T IS THE RELATIONSHIP BETWEEN	
	NING AND SYNAPTIC PLASTICITY?	434
	Animals exhibit many forms of learning	434
10.15	Habituation and sensitization in Aplysia	
	are mediated by changes of synaptic strength	437
10.16	Both short-term and long-term memory	107
	in Aplysia engage cAMP signaling	439
10.17	Olfactory conditioning in Drosophila	
	requires cAMP signaling	441
10.18	Drosophila mushroom body neurons are the site of CS-US convergence for	
	olfactory conditioning	442
10.19	In rodents, spatial learning and memory	
	depend on the hippocampus	446
10.20	Many manipulations that alter hippocampal LTP also alter spatial memory	447
10.21	· · · · · · · · · · · · · · · · · · ·	
	synaptic weight matrix hypothesis revisited	449
		449
	RE DOES LEARNING OCCUR, WHERE IS MEMORY STORED IN	
	BRAIN?	451
10.22		451
10.22	storage of explicit memory	451
10.23		
	fear conditioning	454
10.24	Dopamine plays a key role in reward- based learning	456
10.25	Early experience can leave behind	
	long-lasting memory traces to facilitate adult learning	459
	·	459
SUMN	ИАКҮ	463
FURT	HER READING	464

Chapter 11 Brain Disorders

467

ALZHEIMER'S DISEASE AND OTHER NEURODEGENERATIVE DISEASES 467 Alzheimer's disease is defined by brain 11.1 deposition of numerous amyloid plaques and neurofibrillary tangles 468 11.2 Amyloid plaques mainly consist of aggregates of proteolytic fragments of the amyloid precursor protein (APP) 469 11.3 Mutations in human APP and γ-secretase cause early-onset familial Alzheimer's disease 470 11.4 Animal models offer crucial tools to investigate pathogenic mechanisms 472

11.5An apolipoprotein E (ApoE) variant is a
major risk factor for Alzheimer's disease473

11.6	Microglia dysfunction contributes to late-onset Alzheimer's disease	474
11.7	How can we treat Alzheimer's disease?	475
11.8	Prion diseases are caused by propagation	
11.0	of protein-induced protein conformational change	477
11.9	Aggregation of misfolded proteins is associated with many neurodegenerative diseases	479
11.10	Parkinson's disease results from death of substantia nigra dopamine neurons	480
11.11	α-Synuclein aggregation and spread are prominent features of Parkinson's pathology	480
11.12	Mitochondrial dysfunction is central to the pathogenesis of Parkinson's disease	482
11.13	Treating Parkinson's disease: L-dopa, deep brain stimulation, and cell-	400
	replacement therapy	483
11.14	The various neurodegenerative diseases have common themes and exhibit unique properties	487
PSYC	HIATRIC DISORDERS	487
11.15	Schizophrenia can be partially alleviated	
	by drugs that interfere with dopamine function	488
11.16	Mood disorders have been treated by manipulating monoamine neurotransmitter metabolism	490
11.17	Modulating GABAergic inhibition can alleviate symptoms of anxiety disorders	491
11.18	Addictive drugs hijack the brain's reward system by enhancing the action of VTA dopamine neurons	493
11.19	Human genetic studies suggest that many genes contribute to psychiatric disorders	495
	RODEVELOPMENTAL DISORDERS	498
11.20	Intellectual disabilities and autism spectrum disorders are caused by mutations in many genes	499
11.21	Rett syndrome is caused by defects in MeCP2, a regulator of global gene	500
44.00	expression	500
11.22	MeCP2 acts predominantly in post-mitotic neurons to regulate their maturation and function	502
11.23	Restoring MeCP2 expression in adulthood reverses symptoms in a mouse model of Rett syndrome	503
11.24	-	FOA
11.25		504
11.23	Reducing mGluR signaling ameliorates fragile-X symptoms in animal models	505

11.26	Synaptic dysfunction is a common cellular mechanism that underlies neurodevelopmental and psychiatric disorders	506
11.27	Studies of brain disorders and basic neurobiology research advance each other	507
SUMN	MARY	510
FURTHER READING		511

Chapter 12 **Evolution of the Nervous** System 513 GENERAL CONCEPTS AND APPROACHES IN EVOLUTIONARY ANALYSIS 514 Phylogenetic trees relate all living 12.1 organisms in a historical context 515 Cladistic analysis distinguishes processes 12.2 of evolutionary change 517 Gene duplication, diversification, loss, 12.3 and shuffling provide rich substrates for natural selection 519 12.4 Altering patterns of gene expression is an important mechanism for evolutionary change 520 12.5 Natural selection can act on multiple levels in the developing and adult nervous systems to enhance fitness 521 **EVOLUTION OF NEURONAL** COMMUNICATION 522 12.6 Ion channels appeared sequentially to mediate electrical signaling 523 12.7 Myelination evolved independently in vertebrates and large invertebrates 524 12.8 Synapses likely originated from cell junctions in early metazoans 525 12.9 Neurotransmitter release mechanisms were co-opted from the secretory process 526 **EVOLUTION OF SENSORY SYSTEMS** 527 12.10 G-protein-coupled receptors (GPCRs) are ancient chemosensory receptors in eukaryotes 530

12.11 Chemosensory receptors in animals are predominantly GPCRs

532

- 12.12 Two distinct families of ligand-gated ion channels cooperate to sense odors in insects 532
- 12.13 Retinal- and opsin-based light-sensing apparatus evolved independently at least twice 534

12.14	Photoreceptor neurons evolved in two parallel paths	535
12.15	Diversification of cell types is a crucial step in the evolution of the retinal circuit	538
12.16	Trichromatic color vision in primates originated from variations and duplications of a cone opsin gene	540
12.17	Introducing an extra cone opsin in dichromatic animals enables superior spectral discrimination	542
	UTION OF NERVOUS SYSTEM CTURE AND DEVELOPMENT	543
12.18	All bilaterians share a common body plan specified by conserved developmental regulators	544
12.19	Eye development is controlled by evolutionarily conserved transcription factors	546
12.20	The mammalian neocortex underwent rapid expansion recently	547
12.21	The size of the neocortex can be altered by modifying the mechanisms of neurogenesis	548
12.22	Cortical area specialization can be shaped by input patterns	550
SUMN	IARY	553
FURT	HER READING	555

Chapter 13 Ways of Exploring 557

ANIM	IAL MODELS IN NEUROBIOLOGY	
RESE	ARCH	557
13.1	Some invertebrates provide large, identifiable neurons for electrophysiological investigations	557
13.2	Drosophila and C. elegans allow sophisticated genetic manipulations	558
13.3	Diverse vertebrate animals offer technical ease or special faculties	559
13.4	Mice, rats, and nonhuman primates are important models for mammalian neurobiology research	560
13.5	Human studies are facilitated by a long history of medicine and experimental psychology and by the recent genomic	
	revolution	560
GENETIC AND MOLECULAR TECHNIQUES		
		561
13.6	Forward genetic screens use random mutagenesis to identify genes that	F (6
	control complex biological processes	562

13.7	Reverse genetics disrupts pre-designated genes to assess their functions	563
13.8	RNA interference (RNAi)-mediated knockdown can also be used to assess gene function	567
13.9	Genetic mosaic analysis can pinpoint which cell is critical for mediating gene action	568
13.10	Transgene expression can be controlled in both space and time in transgenic animals	569
13.11	Transgene expression can also be achieved by viral transduction and other transient methods	571
13.12	Accessing specific neuronal types facilitates functional circuit dissection	572
13.13	Gene expression patterns can be determined by multiple powerful techniques	572
13.14	Genome sequencing reveals connections across species and identifies genetic variations that contribute to diseases	574
ANAT	OMICAL TECHNIQUES	575
13.15	Histological analyses reveal the gross organization of the nervous system	575
13.16	Visualizing individual neurons opens new vistas in understanding the nervous system	578
13.17	Fine structure studies can identify key facets of molecular organization within neurons	579
13.18	Mapping neuronal projections allows the tracking of information flow across different brain regions	582
13.19	Mapping synaptic connections reveals neural circuitry	584
RECO	RDING AND MANIPULATING	
NEUR	ONAL ACTIVITY	586
13.20	Extracellular recordings can detect the firing of individual neurons	587
13.21	Intracellular and whole-cell patch recordings can measure synaptic input in addition to firing patterns	589
13.22	Optical imaging can measure the activity of many neurons simultaneously	591
13.23	Neuronal inactivation can be used to reveal which neurons are essential for circuit function and behavior	596
13.24	Neuronal activation can establish sufficiency of neuronal activity in circuit function and behavior	598
13.25	Optogenetics allows control of the activity of genetically targeted neurons with millisecond precision	599

13.26	Synaptic connections can be mapped by physiological and optogenetic		
	methods	601	
BEHAVIORAL ANALYSES			
13.27	Studying animal behavior in natural environments can reveal behavioral repertoires and their adaptive value	603	
13.28	Studying behaviors in highly controlled conditions facilitates investigation of their neural basis	604	
13.29	Behavioral assays can be used to evaluate the functions of genes and neurons and to model human brain		
	disorders	606	
SUMMARY AND PERSPECTIVES			
FURTHER READING			
GLOSSARY			

INDEX