MARCH'S ADVANCED ORGANIC CHEMISTRY REACTIONS, MECHANISMS, AND STRUCTURE

SEVENTH EDITION

Michael B. Smith Professor of Chemistry

CONTENTS

PREFA	CE	xiii
COMM	ON ABBREVIATIONS	xxi
BIOGR	APHICAL STATEMENT	XXV
PART I	INTRODUCTION	1
1. Local	lized Chemical Bonding	3
1.A. 1.B. 1.C. 1.D. 1.E. 1.F. 1.G. 1.H. 1.J. 1.J. 1.K. 1.L.	Covalent Bonding Multiple Valence Hybridization Multiple Bonds Photoelectron Spectroscopy Electronic Structures of Molecules Electronegativity Dipole Moment Inductive and Field Effects Bond Distances Bond Angles Bond Energies	3 6 7 9 11 14 15 18 19 21 25 27
2. Deloc	calized Chemical Bonding	31
2.A. 2.B.	Molecular Orbitals Bond Energies and Distances in Compounds Containing	32
2.C. 2.D. 2.E. 2.F. 2.G. 2.H. 2.I.	Delocalized Bonds Molecules that have Delocalized Bonds Cross-Conjugation The Rules of Resonance The Resonance Effect Steric Inhibition of Resonance and the Influences of Strain $p\pi-d\pi$ Bonding. Ylids Aromaticity 2.I.i. Six-Membered Rings 2.I.ii. Five, Seven, and Eight-Membered Rings 2.Liii. Other Systems Containing Aromatic Sextets	35 37 42 43 45 46 49 50 54 57
2.J.	Alternant and Nonalternant Hydrocarbons	63

VI CONTENTS

2.	K.	Aromati	c Systems with Electron Numbers other than Six	65
		2.K.i.	Systems of Two Electrons	66
		2.K.ii.	Systems of Four Electrons: Antiaromaticity	67
		2.K.iii.	Systems of Eight Electrons	71
		2.K.iv.	Systems of Ten Electrons	72
		2.K.v.	Systems of more than Ten Electrons: $4n + 2$ Electrons	74
		2.K.vi.	Systems of more than 10 Electrons: 4n Electrons	79
	2.L.	Other A	romatic Compounds	82
	2.M.	Hyperco	niugation	85
	2.N.	Tautome	erism	89
		2 N i	Keto-Enol Tautomerism	89
		2.N.ii.	Other Proton-Shift Tautomerism	92
3.	Bond	ling Wea	ker Than Covalent	96
	3.A.	Hydroge	en Bonding	96
	3.B.	$\pi - \pi$ Inte	eractions	103
	3.C.	Addition	n Compounds	104
		3 C i	Electron Donor-Acceptor Complexes	104
		3 C ii	Crown Ether Complexes and Cryptates	104
		3.C iii	Inclusion Compounds	113
		3.C.iv.	Cyclodextrins	116
	3 D	Catenan	es and Rotavanes	118
	3.E.	Cucurbi	t[n]Uril-Based Gyroscane	121
4.	Stere	ochemis	try and Conformation	122
	4.A.	Optical	Activity and Chirality	122
		Λ Δ i	Dependence of Potetion on Conditions of Measurement	
		T.A.L.	Dependence of Kolation on Conditions of Meastrement	124
	4 R	What K	inds of Molecules Display Optical Activity?	124 125
	4.B. 4 C	What K	inds of Molecules Display Optical Activity?	124 125 136
	4.B. 4.C. 4.D.	What Ki The Fise	inds of Molecules Display Optical Activity? cher Projection	124 125 136 137
	4.B. 4.C. 4.D.	What K The Fise Absolut	inds of Molecules Display Optical Activity? cher Projection e Configuration The CAHN_INGOL D_PRELOG System	124 125 136 137
	4.B. 4.C. 4.D.	What Ki The Fisc Absolut 4.D.i. 4 D ii	inds of Molecules Display Optical Activity? cher Projection e Configuration The CAHN–INGOLD–PRELOG System Methods of Determining Configuration	124 125 136 137 138
	4.B. 4.C. 4.D.	What Ki The Fisc Absolut 4.D.i. 4.D.ii.	inds of Molecules Display Optical Activity? cher Projection e Configuration The CAHN–INGOLD–PRELOG System Methods of Determining Configuration us of Optical Activity	124 125 136 137 138 141
	4.B. 4.C. 4.D. 4.E.	What Ki The Fisc Absolut 4.D.i. 4.D.ii. The Cau	inds of Molecules Display Optical Activity? cher Projection e Configuration The CAHN–INGOLD–PRELOG System Methods of Determining Configuration use of Optical Activity as with more then One Starsogenia Center	124 125 136 137 138 141 145
	4.B. 4.C. 4.D. 4.E. 4.F. 4.G	What Ki The Fisc Absolut 4.D.i. 4.D.ii. The Cau Molecul	inds of Molecules Display Optical Activity? cher Projection e Configuration The CAHN–INGOLD–PRELOG System Methods of Determining Configuration use of Optical Activity .es with more than One Stereogenic Center atric Synthesis	124 125 136 137 138 141 145 146
	4.B. 4.C. 4.D. 4.E. 4.F. 4.F. 4.G. 4 H	What Ki The Fisc Absolut 4.D.i. 4.D.ii. The Cau Molecul Asymm	inds of Molecules Display Optical Activity? cher Projection e Configuration The CAHN–INGOLD–PRELOG System Methods of Determining Configuration use of Optical Activity es with more than One Stereogenic Center etric Synthesis a of Resolution	124 125 136 137 138 141 145 146 149
	4.B. 4.C. 4.D. 4.E. 4.F. 4.G. 4.H. 4 I	What Ki The Fisc Absolut 4.D.i. 4.D.ii. The Cau Molecul Asymm Methodi	inds of Molecules Display Optical Activity? cher Projection e Configuration The CAHN–INGOLD–PRELOG System Methods of Determining Configuration use of Optical Activity les with more than One Stereogenic Center etric Synthesis s of Resolution Purity	124 125 136 137 138 141 145 146 149 154
	4.B. 4.C. 4.D. 4.E. 4.F. 4.G. 4.H. 4.I. 4 I	What Ki The Fisc Absolut 4.D.i. 4.D.ii. The Cau Molecul Asymm Methoda Optical	inds of Molecules Display Optical Activity? cher Projection e Configuration The CAHN–INGOLD–PRELOG System Methods of Determining Configuration use of Optical Activity les with more than One Stereogenic Center etric Synthesis s of Resolution Purity Isomerism	124 125 136 137 138 141 145 146 149 154 160 162
	4.B. 4.C. 4.D. 4.E. 4.F. 4.G. 4.H. 4.I. 4.J.	What Ki The Fisc Absolut 4.D.i. 4.D.ii. The Cau Molecul Asymm Methods Optical <i>cis-tran</i>	inds of Molecules Display Optical Activity? cher Projection e Configuration The CAHN–INGOLD–PRELOG System Methods of Determining Configuration use of Optical Activity les with more than One Stereogenic Center etric Synthesis s of Resolution Purity s Isomerism ais trans Loomerism Resulting from Double Rende	124 125 136 137 138 141 145 146 149 154 160 162
	4.B. 4.C. 4.D. 4.E. 4.F. 4.G. 4.H. 4.J.	What Ki The Fisc Absolut 4.D.i. 4.D.ii. The Cau Molecul Asymm Methodi Optical <i>cis-tran</i> 4.J.i. 4 Lii	inds of Molecules Display Optical Activity? cher Projection e Configuration The CAHN–INGOLD–PRELOG System Methods of Determining Configuration use of Optical Activity les with more than One Stereogenic Center etric Synthesis s of Resolution Purity Is Isomerism <i>cis-trans</i> Isomerism Resulting from Double Bonds <i>cis-trans</i> Isomerism of Monecuclic Compounds	124 125 136 137 138 141 145 146 149 154 160 162 162
	4.B. 4.C. 4.D. 4.E. 4.F. 4.G. 4.H. 4.I. 4.J.	What Ki The Fisc Absolut 4.D.i. 4.D.ii. The Cau Molecul Asymm Methodi Optical <i>cis-tran</i> 4.J.i. 4.J.ii.	inds of Molecules Display Optical Activity? cher Projection e Configuration The CAHN–INGOLD–PRELOG System Methods of Determining Configuration use of Optical Activity les with more than One Stereogenic Center etric Synthesis s of Resolution Purity 's Isomerism <i>cis-trans</i> Isomerism Resulting from Double Bonds <i>cis-trans</i> Isomerism of Monocyclic Compounds <i>cis-trans</i> Isomerism of Fused and Bridged Ping Systems	124 125 136 137 138 141 145 146 149 154 160 162 162 162
	4.B. 4.C. 4.D. 4.E. 4.F. 4.G. 4.H. 4.J.	What Ki The Fisc Absolut 4.D.i. 4.D.ii. The Cau Molecul Asymm Methodi Optical <i>cis-tran</i> 4.J.i. 4.J.ii.	inds of Molecules Display Optical Activity? cher Projection e Configuration The CAHN–INGOLD–PRELOG System Methods of Determining Configuration use of Optical Activity les with more than One Stereogenic Center etric Synthesis s of Resolution Purity Is Isomerism <i>cis-trans</i> Isomerism Resulting from Double Bonds <i>cis-trans</i> Isomerism of Monocyclic Compounds <i>cis-trans</i> Isomerism of Fused and Bridged Ring Systems	124 125 136 137 138 141 145 146 149 154 160 162 162 162 165 167
	4.B. 4.C. 4.D. 4.E. 4.F. 4.G. 4.H. 4.J. 4.J.	What Ki The Fisc Absolut 4.D.i. 4.D.ii. The Cau Molecul Asymm Method Optical <i>cis-tran</i> 4.J.i. 4.J.ii. 4.J.ii.	inds of Molecules Display Optical Activity? cher Projection e Configuration The CAHN–INGOLD–PRELOG System Methods of Determining Configuration use of Optical Activity les with more than One Stereogenic Center etric Synthesis s of Resolution Purity Is Isomerism <i>cis-trans</i> Isomerism Resulting from Double Bonds <i>cis-trans</i> Isomerism of Monocyclic Compounds <i>cis-trans</i> Isomerism of Fused and Bridged Ring Systems Isomerism topic and Disctorootonic Atoms. Crowner and Faces	124 125 136 137 138 141 145 146 149 154 160 162 162 165 167 168
	4.B. 4.C. 4.D. 4.E. 4.F. 4.G. 4.H. 4.J. 4.J. 4.K. 4.L.	What Ki The Fisc Absolut 4.D.i. 4.D.ii. The Cau Molecul Asymm Methodi Optical <i>cis-tran</i> 4.J.i. 4.J.ii. 4.J.ii. Out-In I Enantio	inds of Molecules Display Optical Activity? cher Projection e Configuration The CAHN–INGOLD–PRELOG System Methods of Determining Configuration use of Optical Activity les with more than One Stereogenic Center etric Synthesis s of Resolution Purity Is Isomerism <i>cis-trans</i> Isomerism Resulting from Double Bonds <i>cis-trans</i> Isomerism of Monocyclic Compounds <i>cis-trans</i> Isomerism of Fused and Bridged Ring Systems Isomerism topic and Diastereotopic Atoms, Groups, and Faces varific and Stareoselective Syntheses	124 125 136 137 138 141 145 146 149 154 160 162 162 165 167 168 170
	4.B. 4.C. 4.D. 4.E. 4.F. 4.G. 4.H. 4.J. 4.J. 4.K. 4.L. 4.M. 4.N.	What Ki The Fisc Absolut 4.D.i. 4.D.ii. The Cau Molecul Asymm Methodi Optical <i>cis-tran</i> 4.J.i. 4.J.ii. 4.J.ii. Out-In I Enantio Stereosp	Dependence of Rotation on Conditions of Weastrement inds of Molecules Display Optical Activity? cher Projection e Configuration The CAHN–INGOLD–PRELOG System Methods of Determining Configuration use of Optical Activity les with more than One Stereogenic Center etric Synthesis s of Resolution Purity ts Isomerism cis-trans Isomerism Resulting from Double Bonds cis-trans Isomerism of Monocyclic Compounds cis-trans Isomerism of Fused and Bridged Ring Systems Isomerism topic and Diastereotopic Atoms, Groups, and Faces pecific and Stereoselective Syntheses pational Analysis	124 125 136 137 138 141 145 146 149 154 160 162 162 165 167 168 170 173
	4.B. 4.C. 4.D. 4.E. 4.F. 4.G. 4.H. 4.J. 4.J. 4.K. 4.L. 4.N.	What Ki The Fisc Absolut 4.D.i. 4.D.ii. The Cau Molecul Asymm Methodi Optical <i>cis-tran</i> 4.J.i. 4.J.ii. 0ut-In Enantio Stereosp Conforr	Dependence of Rotation on Conditions of Weastrement inds of Molecules Display Optical Activity? cher Projection e Configuration The CAHN–INGOLD–PRELOG System Methods of Determining Configuration use of Optical Activity les with more than One Stereogenic Center etric Synthesis s of Resolution Purity Is Isomerism <i>cis-trans</i> Isomerism Resulting from Double Bonds <i>cis-trans</i> Isomerism of Monocyclic Compounds <i>cis-trans</i> Isomerism of Fused and Bridged Ring Systems Isomerism topic and Diastereotopic Atoms, Groups, and Faces pecific and Stereoselective Syntheses national Analysis	124 125 136 137 138 141 145 146 149 154 160 162 162 165 167 168 170 173 173

		4.N.ii.	Conformation in Six-Membered Rings	180
		4.N.iii.	Conformation in Six-Membered Rings Containing Heteroatoms	186
		4.N.iv.	Conformation in Other Rings	188
	4.0.	Molecul	ar Mechanics	190
	4.P.	STRAIN	1	192
		4 Pi	Strain in Small Rings	193
		4.P.ii.	Strain in Other Rings	199
		4.P.iii.	Unsaturated Rings	201
		4.P.iv.	Strain Due to Unavoidable Crowding	204
5.	Carb	ocations	, Carbanions, Free Radicals, Carbenes, and Nitrenes	208
	5.A.	Carboca	tions	208
		5.A.i.	Nomenclature	208
		5.A.ii.	Stability and Structure of Carbocations	209
		5.A.iii.	The Generation and Fate of Carbocations	218
	5.B.	Carbani	ons	221
		5.B.i.	Stability and Structure	221
		5.B.ii.	The Structure of Organometallic Compounds	228
		5.B.iii.	The Generation and Fate of Carbanions	233
	5.C.	Free Ra	dicals	234
		5.C.i.	Stability and Structure	234
		5.C.ii.	The Generation and Fate of Free Radicals	245
		5.C.iii.	Radical Ions	248
	5.D.	Carbene	28	249
		5.D.i.	Stability and Structure	249
		5.D.ii.	The Generation and Fate of Carbenes	253
	5.E.	Nitrenes	5	257
6.	Mec	hanisms	and Methods of Determining them	261
	6.A.	Types o	f Mechanism	261
	6.B.	Types o	f Reaction	262
	6.C.	Thermo	dynamic Requirements for Reaction	264
	6.D.	Kinetic	Requirements for Reaction	266
	6.E.	The Bal	dwin Rules for Ring Closure	270
	6.F.	Kinetic	and Thermodynamic Control	271
	6.G.	The Ha	mmond Postulate	272
	6.H.	Microso	copic Reversibility	273
	6.I.	Marcus	Theory	273
	6.J.	Method	s of Determining Mechanisms	275
		6.J.i.	Identification of Products	275
		6.J.ii.	Determination of the Presence of an Intermediate	275
		6.J.iii.	The Study of Catalysis	211
		6.J.iv.	Isotopic Labeling	211
		6.J.v.	Stereochemical Evidence	210
		6.J.vi.	Kinetic Evidence	210
		6.J.V11.	Isotope Effects	205

7. Irradiation Processes in Organic Chemistry	289
7.A. Photochemistry	289
7.A.i. Excited States and the Ground State	289
7.A.ii. Singlet and Triplet States: "Forbidden" Transitions	291
7.A.iii. Types of Excitation	292
7.A.iv. Nomenclature and Properties of Excited States	294
7.A.v. Photolytic Cleavage	295
7.A.vi. The Fate of the Excited Molecule: Physical Processes	296
7.A.vii. The Fate of the Excited Molecule: Chemical Processes	301
7.A.viii. The Determination of Photochemical Mechanisms	306
7.B. Sonochemistry	307
7.C. Microwave Chemistry	309
8. Acids and Bases	312
8.A. Brønsted Theory	312
8.A.i. Brønsted Acids	313
8.A.ii. Brønsted Bases	320
8.B. The Mechanism of Proton-Transfer Reactions	323
8.C. Measurements of Solvent Acidity	324
8.D. Acid and Base Catalysis	327
8.E. Lewis Acids and Bases	330
8.E.i. Hard–Soft Acids–Bases	331
8 F The Effects of Structure on the Strengths of Acids and Bases	334
8.G. The Effects of the Medium on Acid and Base Strength	343
9. Effects of Structure and Medium on Reactivity	347
9.A. Resonance and Field Effects	347
9.B. Steric Effects	349
9.C. Quantitative Treatments of the Effect of Structure on Reactivity	352
9.D. Effect of Medium on Reactivity and Rate	361
9.D.i. High Pressure	362
9.D.ii. Water and Other Non-Organic Solvents	363
9.D.iii. Ionic Solvents	364
9.D.iv. Solventless Reactions	366
	2(7
PARTII INTRODUCTION	307
10. Aliphatic Substitution, Nucleophilic and Organometallic	373
10.A. Mechanisms	373
10.A.i. The $S_N 2$ Mechanism	374
10.A.ii. The S _N 1 Mechanism	379
10.A.iii. Ion Pairs in the $S_N I$ Mechanism	383
10.A.iv. Mixed $S_N I$ and $S_N 2$ Mechanisms	387
10.B. SET Mechanisms	389

CONTENTS	ix
----------	----

10.C	. The Nei	ghboring-Group Mechanism	391
	10.C.i.	Neighboring-Group Participation by π and σ Bonds:	
		Nonclassical Carbocations	394
10.D	. The S _N i	Mechanism	408
10.E	. Nucleop	hilic Substitution at an Allylic Carbon: Allylic	
	Rearrang	gements	409
10.F.	Nucleop	hilic Substitution at an Aliphatic Trigonal Carbon:	
10 0	The Tetr	ahedral Mechanism	413
10.0	. Reactivi		417
	10.G.1.	The Effect of Substrate Structure	417
	10.G.II.	The Effect of the Attacking Nucleophile	426
	10.G.m.	The Effect of the Departies Medium	432
	10.0.1v.	Phase-Transfer Catalucia	435
	10.G.v.	Influencing Reactivity by External Means	442
	10.G.vii	Ambident (Bidentant) Nucleonhiles: Regioselectivity	446
	10.G.vii	i. Ambident Substrates	450
10.H	. Reaction	15	451
	10 H i	Oxygen Nucleonhiles	451
	10.H.ji	Attack by OR at an Alkyl Carbon	459
	10.H.iii.	Sulfur Nucleophiles	475
	10.H.iv.	Nitrogen Nucleophiles	481
	10.H.v.	Halogen Nucleophiles	498
	10.H.vi.	Carbon Nucleophiles	510
11. Aro	matic Su	bstitution, Electrophilic	569
11.A	. Mechani	isms	569
	11.A.i.	The Arenium Ion Mechanism	570
	11.A.ii.	The S _E 1 Mechanism	576
11.B	. Orientat	ion and Reactivity	576
	11.B.i.	Orientation and Reactivity in Monosubstituted	
		Benzene Rings	576
	11.B.ii.	The Ortho/Para Ratio	580
	11.B.iii.	Ipso Attack	581
	11.B.iv.	Orientation in Benzene Rings with More Than One Substituent	583
	11.B.v.	Orientation in Other Ring Systems	584
11.C	. Quantita	tive Treatments of Reactivity in the Substrate	586
11.D	. A Quant	itative Treatment of Reactivity of the Electrophile: The Selectivity	
	Relation	ship	588
11.E.	The Effe	ect of the Leaving Group	591
11.F.	Reaction		291
	11.F.i.	Hydrogen as the Leaving Group in Simple	500
	11 84	Substitution Reactions	392
	11.1.11.	Reactions	635
	11.F.iii	Other Leaving Groups	641

and Organometallic612.A. Mechanisms6.12.A.i.Bimolecular Mechanisms: $S_E 2$ and $S_E i$ 6.12.A.ii.The $S_E 1$ Mechanism6.	50 50 54 57
12.A. Mechanisms612.A.i.Bimolecular Mechanisms: $S_E 2$ and $S_E i$ 612.A.ii.The $S_E 1$ Mechanism6	50 50 54 57
12.A.i.Bimolecular Mechanisms: $S_E 2$ and $S_E i$ 6.12.A.ii.The $S_E 1$ Mechanism6.	50 54 57
12.A.ii. The $S_E 1$ Mechanism 6.	54 57
	57
12.A.iii. Electrophilic Substitution Accompanied by Double-Bond Shifts 6.	
12.A.iv. Other Mechanisms 6.	58
12.B. Reactivity 6.	58
12.C. Reactions 6	60
12.C.i. Hydrogen as Leaving Group 6	60
12.C.ii. Metals as Leaving Groups 6	98
12.C.iii. Halogen as Leaving Group 7	13
12.C.iv. Carbon Leaving Groups 7	18
12.C.v. Electrophilic Substitution at Nitrogen 72	27
13. Aromatic Substitution: Nucleophilic and Organometallic 72	32
13.A. Mechanisms 72	32
13.A.i. The S _N Ar Mechanism 77	32
13.A.ii. The S _N 1 Mechanism 7	35
13.A.iii. The Benzyne Mechanism 7	37
13.A.iv. The S _{RN} 1 Mechanism 7	39
13.A.v. Other Mechanisms 74	40
13.B. Reactivity 74	41
13.B.i. The Effect of Substrate Structure 74	41
13.B.ii. The Effect of the Leaving Group 74	44
13.B.iii. The Effect of the Attacking Nucleophile 74	45
13.C. Reactions 74	45
13.C.i. All Leaving Groups Except Hydrogen and N_2^+ 74	46
13.C.ii. Hydrogen as Leaving Group 78	84
13.C.iii. Nitrogen as Leaving Group 71	88
13.C.iv. Rearrangements 79	97
14. Substitution Reactions: Radical 80	03
14.A. Mechanisms	03
14.A.i. Radical Mechanisms in General	03
14.A.ii. Free Radical Substitution Mechanisms	07
14.A.iii. Mechanisms at an Aromatic Substrate 80	09
14.A.iv. Neighboring-Group Assistance in Free Radical Reactions 8	10
14.B. Reactivity 8	12
14.B.i. Reactivity for Aliphatic Substrates	12
14.B.ii. Reactivity at a Bridgehead	17
14.B.iii. Reactivity in Aromatic Substrates	18
14.B.iv. Reactivity in the Attacking Radical 8	19
14.B.v. The Effect of Solvent on Reactivity 82	20

14.C.	Reaction	S	821
	14.C.i.	Hydrogen as a Leaving Group	821
	14.C.ii.	N ₂ as Leaving Group	846
	14.C.iii.	Metals as Leaving Groups	849
	14.C.iv.	Halogen as Leaving Group	851
	14.C.v.	Sulfur as Leaving Group	851
	14.C.vi.	Carbon as Leaving Group	853
15. Add	ition to C	Carbon–Carbon Multiple Bonds	859
15.A.	Mechani	sms	859
	15.A.i.	Electrophilic Addition	859
	15.A.ii.	Nucleophilic Addition	865
	15.A.iii.	Free Radical Addition	867
	15.A.iv.	Cyclic Mechanisms	869
	15.A.v.	Addition to Conjugated Systems	869
15.B.	Orientati	on and Reactivity	871
	15.B.i.	Reactivity	871
	15.B.ii.	Orientation	874
	15.B.iii.	Stereochemical Orientation	877
	15.B.iv.	Addition to Cyclopropane Rings	879
15.C.	Reaction	S	881
	15.C.i.	Isomerization of Double and Triple Bonds	881
	15.C.ii.	Reactions in which Hydrogen Adds to One Side	883
	15.C.iii.	Reactions in which Hydrogen Adds to Neither Side	981
	15.C.iv.	Cycloaddition Reactions	1014
16. Add	ition to C	Carbon–Hetero Multiple Bonds	1067
16.A.	Mechani	sm and Reactivity	1067
	16.A.i.	Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The	
		Tetrahedral Mechanism	1069
16.B.	Reaction	S	1075
	16.B.i.	Reactions in which Hydrogen or a Metallic Ion Adds to the	
		Heteroatom	1075
	16.B.ii.	Acyl Substitution Reactions	1189
	16.B.iii.	Reactions in which Carbon Adds to the Heteroatom	1239
	16.B.iv.	Addition to Isocyanides	1246
	16.B.v.	Nucleophilic Substitution at a Sulfonyl Sulfur Atom	1248
17. Elim	inations		1253
17.A.	Mechani	sms and Orientation	1253
	17.A.i.	The E2 Mechanism	1254
	17.A.ii.	The E1 Mechanism	1261
	17.A.iii.	The E1cB Mechanism	1262
	17.A.iv.	The E1–E2–E1cB Spectrum	1267
	17.A.v.	The E2C Mechanism	1268
17.B.	Regioche	emistry of the Double Bond	1269

17.C. S	Stereoch	emistry of the Double Bond	1273
17.0.1		Effect of Substrate Structure	1274
1	17.D.I.	Effect of the Attacking Base	1274
1	7 D iii	Effect of the Leaving Group	1270
1	7.D.iv.	Effect of the Medium	1270
17.E. N	Mechani	sms and Orientation in Pyrolytic Eliminations	1277
1	7.E.i.	Mechanisms	1278
1	7.E.ii.	Orientation in Pyrolytic Eliminations	1281
1	7.E.iii.	1,4-Conjugate Eliminations	1282
17.F. F	Reaction	S	1282
1	7.F.i.	Reactions in which $C=C$ and $C\equiv C$ Bonds are Formed	1282
1	7.F.ii.	Fragmentations	1307
1	7.F.iii.	Reactions in which $C \equiv N$ or $C = N$ Bonds are Formed	1310
1	7.F.iv.	Reactions in which C=O Bonds are Formed	1314
1	7.F.v.	Reactions in which N=N Bonds are Formed	1315
1	7.F.vi.	Extrusion Reactions	1316
18. Rearr	angeme	ents	1321
18.A. N	Mechani	sms	1322
1	8.A.i.	Nucleophilic Rearrangements	1322
1	8.A.ii.	The Actual Nature of the Migration	1324
1	8.A.iii.	Migratory Aptitudes	1328
1	8.A.iv.	Memory Effects	1330
18.B. I	Longer N	Nucleophilic Rearrangements	1331
18.C. F	Free Rad	lical Rearrangements	1333
18.D.C	Carbene	Rearrangements	1337
18.E. E	Electrop	hilic Rearrangements	1337
18.F. F	Reaction	IS	1337
1	l 8.F.i.	1,2-Rearrangements	1338
1	l8.F.ii.	Non-1,2 Rearrangements	1380
19. Oxida	ations a	nd Reductions	1433
19.A.N	Mechani	sms	1434
19.B. F	Reaction	IS	1436
1	l9.B.i.	Oxidations	1437
1	19.B.ii.	Reductions	1497
APPEND	DIX A:	THE LITERATURE OF ORGANIC CHEMISTRY	1569
APPEND	DIX B:	CLASSIFICATION OF REACTIONS BY TYPE OF	
		COMPOUNDS SYNTHESIZED	1605
INDEXE	S		
AUTH	OR INI	DEX	1631
SUBJE	ECT IN	DEX	1835