HANDBOOK OF POLYMER CRYSTALLIZATION

.

Edited by

EWA PIORKOWSKA

Centre of Molecular and Macromolecular Studies Polish Academy of Sciences Lodz, Poland

GREGORY C. RUTLEDGE

Department of Chemical Engineering Massachusetts Institute of Technology Cambridge, MA

CONTENTS

Preface Contributors				xiii	
				XV	
1	Experimental Techniques			1	
	Benja	imin S. H	Isiao, Feng Zuo, and Yimin Mao, Christoph Schick		
	1.1		uction, 1		
	1.2	-	al Microscopy, 2		
		1.2.1	Reflection and Transmission Microscopy, 2		
		1.2.2	,		
	1.3	1.2.3 Electr	Selected Applications, 3 on Microscopy, 5		
	1.5	1.3.1	Imaging Principle, 5		
		1.3.2			
		1.3.3			
		1.3.4	Selected Applications, 8		
	1.4		ic Force Microscopy, 9		
		1.4.1	Imaging Principle, 9		
		1.4.2	Scanning Modes, 9		
		1.4.3	Comparison between AFM and EM, 10		
		1.4.4	Recent Development: Video AFM, 10		
		1.4.5	Selected Applications, 10		
	1.5 Nuclear Magnetic Resonance, 12		0		
		1.5.1		,	
			Relevant Techniques, 13		
		1.5.3	Recent Development: Multidimensional NMR, 14		
		1.5.4	Selected Applications, 14		
	1.6		ring Techniques: X-Ray, Light, and Neutron, 15		
		1.6.1	Wide-Angle X-Ray Diffraction, 15		
		1.6.2	Small-Angle X-Ray Scattering, 17		
		1.6.3	Small-Angle Light Scattering, 19 Small-Angle Neutron Scattering, 21		
	1.7	1.6.4 Diffor	ential Scanning Calorimetry, 22		
	1./	1.7.1	Modes of Operation, 22		
		1.7.1	Determination of Degrée of Crystallinity, 25		
		1.1.4	potorimitation of pogroo of or planning, bo		

v

1.8 Summary, 25 Acknowledgments, 26 References, 26

2 Crystal Structures of Polymers

Claudio De Rosa and Finizia Auriemma

- 2.1 Constitution and Configuration of Polymer Chains, 31
- 2.2 Conformation of Polymer Chains in Crystals and Conformational Polymorphism, 33
- 2.3 Packing of Macromolecules in Polymer Crystals, 43
- 2.4 Symmetry Breaking, 49
- 2.5 Packing Effects on the Conformation of Polymer Chains in the Crystals: The Case of Aliphatic Polyamides, 50
- 2.6 Defects and Disorder in Polymer Crystals, 55
 - 2.6.1 Substitutional Isomorphism of Different Chains, 56
 - 2.6.2 Substitutional Isomorphism of Different Monomeric Units, 57
 - 2.6.3 Conformational Isomorphism, 58
 - 2.6.4 Disorder in the Stacking of Ordered Layers (Stacking Fault Disorder), 58
- 2.7 Crystal Habits, 60

2.7.1 Rounded Lateral Habits, 66

Acknowledgments, 67

References, 67

3 Structure of Polycrystalline Aggregates

Buckley Crist

- 3.1 Introduction, 73
- 3.2 Crystals Grown from Solution, 75
 - 3.2.1 Facetted Monolayer Crystals from Dilute Solution, 75
 - 3.2.2 Dendritic Crystals from Dilute Solution, 81
 - 3.2.3 Growth Spirals in Dilute Solution, 85
 - 3.2.4 Concentrated Solutions, 92
- 3.3 Crystals and Aggregates Grown from Molten Films, 94
 - 3.3.1 Structures in Thin Films, 94
 - 3.3.2 Structures in Ultrathin Films, 98
 - 3.3.3 Edge-On Lamellae in Molten Films, 102
- 3.4 Spherulitic Aggregates, 104
 - 3.4.1 Optical Properties of Spherulites, 105
 - 3.4.2 Occurrence of Spherulites, 108
 - 3.4.3 Development of Spherulites, 110
 - 3.4.4 Banded Spherulites and Lamellar Twist, 116

Acknowledgments, 121

References, 121

4 Polymer Nucleation

Kiyoka N. Okada and Masamichi Hikosaka

- 4.1 Introduction, 126
- 4.2 Classical Nucleation Theory, 126
 - 4.2.1 Nucleation Rate (*I*), 126
 - 4.2.2 Free Energy for Formation of a Nucleus $\Delta G(N)$, 127

125

73

- 4.2.3 Free Energy for Formation of a Critical Nucleus (ΔG^*), 127
- 4.2.4 Shape of a Nucleus Is Related to Kinetic Parameters, 128
- 4.2.5 Diffusion, 128
- 4.3 Direct Observation of Nano-Nucleation by Synchrotron Radiation, 128
 - 4.3.1 Introduction and Experimental Procedure, 128
 - 4.3.2 Observation of Nano-Nucleation by SAXS, 128
 - 4.3.3 Extended Guinier Plot Method and Iteration Method, 129
 - 4.3.4 Kinetic Parameters and Size Distribution of the Nano-Nucleus, 130
 - 4.3.5 Real Image of Nano-Nucleation, 131
 - 4.3.6 Supercooling Dependence of Nano-nucleation, 133
 - 4.3.7 Relationship between Nano-Nucleation and Macro-Crystallization, 133
- 4.4 Improvement of Nucleation Theory, 135
 - 4.4.1 Introduction, 135
 - 4.4.2 Nucleation Theory Based on Direct Observation of Nucleation, 135
 - 4.4.3 Confirmation of the Theory by Overall Crystallinity, 137
- 4.5 Homogeneous Nucleation from the Bulk Melt under Elongational Flow, 139
 - 4.5.1 Introduction and Case Study, 139
 - 4.5.2 Formulation of Elongational Strain Rate $\dot{\varepsilon}$, 139
 - 4.5.3 Nano-Oriented Crystals, 140
 - 4.5.4 Evidence of Homogeneous Nucleation, 144
 - 4.5.5 Nano-Nucleation Results in Ultrahigh Performance, 147
- 4.6 Heterogeneous Nucleation, 148
 - 4.6.1 Introduction, 148
 - 4.6.2 Experimental, 149
 - 4.6.3 Role of Epitaxy in Heterogeneous Nucleation, 150
 - 4.6.4 Acceleration Mechanism of Nucleation of Polymers by Nano-Sizing of Nucleating Agent, 153
- 4.7 Effect of Entanglement Density on the Nucleation Rate, 156
 - 4.7.1 Introduction and Experimental, 156
 - 4.7.2 Increase of v_e Leads to a Decrease of *I*, 157
 - 4.7.3 Change of v_e with Δt , 158
 - 4.7.4 Two-Step Entangling Model, 159
- 4.8 Conclusion, 160

Acknowledgments, 161

References, 161

5 Growth of Polymer Crystals

Kohji Tashiro

- 5.1 Introduction, 165
 - 5.1.1 Complex Behavior of Polymers, 165
- 5.2 Growth of Polymer Crystals from Solutions, 167
 - 5.2.1 Single Crystals, 167
 - 5.2.2 Crystallization from Solution under Shear, 168
 - 5.2.3 Solution Casting Method, 168
- 5.3 Growth of Polymer Crystals from Melt, 169
 - 5.3.1 Positive and Negative Spherulites, 169
 - 5.3.2 Spherulite Morphology and Crystalline Modification, 170
 - 5.3.3 Spherulite Patterns of Blend Samples, 172

viii CONTENTS

- 5.4 Crystallization Mechanism of Polymer, 173
 - 5.4.1 Basic Theory of Crystallization of Polymer, 173
 - 5.4.2 Growth Rate of Spherulites, 177
- 5.5 Microscopically Viewed Structural Evolution in the Growing Polymer Crystals, 178
 - 5.5.1 Experimental Techniques, 178
 - 5.5.2 Structural Evolution in Isothermal Crystallization, 179
 - 5.5.3 Shear-Induced Crystallization of the Melt, 186
- 5.6 Crystallization upon Heating from the Glassy State, 189
 - 5.6.1 Cold Crystallization, 189
 - 5.6.2 Solvent-Induced Crystallization of Polymer Glass, 189
- Crystallization Phenomenon Induced by Tensile Force, 191 5.7
- 5.8 Photoinduced Formation and Growth of Polymer Crystals, 191
- 5.9 Conclusion, 192

References, 193

Computer Modeling of Polymer Crystallization

Gregory C. Rutledge

- 6.1 Introduction, 197
- 6.2 Methods, 198
 - 6.2.1 Molecular Dynamics, 199
 - 6.2.2 Langevin Dynamics, 200
 - 6.2.3 Monte Carlo, 200
 - 6.2.4 Kinetic Monte Carlo, 201
- 6.3 Single-Chain Behavior in Crystallization, 202
 - 6.3.1 Solid-on-Solid Models, 202
 - 6.3.2 Molecular and Langevin Dynamics, 203
- Crystallization from the Melt, 204 6.4
 - 6.4.1 Lattice Monte Carlo Simulations, 205
 - 6.4.2 Molecular Dynamics Using Coarse-Grained Models, 206
 - 6.4.3 Molecular Dynamics Using Atomistic Models, 207
- 6.5 Crystallization under Deformation or Flow, 208
- 6.6 Concluding Remarks, 210

References, 211

7 Overall Crystallization Kinetics

Ewa Piorkowska and Andrzej Galeski

- 7.1 Introduction, 215
- 7.2 Measurements, 216
- 7.3 Simulation, 217
- Theories: Isothermal and Nonisothermal Crystallization, 218 7.4
 - 7.4.1 Introductory Remarks, 218
 - 7.4.2 Extended Volume Approach, 218
 - 7.4.3 Probabilistic Approaches, 220
 - 7.4.4 Isokinetic Model, 223
 - 7.4.5 Rate Equations, 223
- Complex Crystallization Conditions: General Models, 224 7.5 7.6
 - Factors Influencing the Overall Crystallization Kinetics, 224
 - 7.6.1 Crystallization in a Uniform Temperature Field, 224
 - 7.6.2 Crystallization in a Temperature Gradient, 225
 - 7.6.3 Crystallization in a Confined Space, 226
 - 7.6.4 Flow-Induced Crystallization, 228

215

- 7.7 Analysis of Crystallization Data, 230
 - 7.7.1 Isothermal Crystallization, 230
 - 7.7.2 Nonisothermal Crystallization, 231

7.8 Conclusions, 233

References, 234

8 Epitaxial Crystallization of Polymers: Means and Issues

Annette Thierry and Bernard A. Lotz

- 8.1 Introduction and History, 237
- 8.2 Means of Investigation of Epitaxial Crystallization, 239
 - 8.2.1 Global Techniques, 239
 - 8.2.2 Thin Film Techniques, 239
 - 8.2.3 Sample Preparation Techniques, 240
 - 8.2.4 Other Samples and Investigation Procedures, 241
- 8.3 Epitaxial Crystallization of Polymers, 241
 - 8:3.1 General Principles, 241
 - 8.3.2 Epitaxial Crystallization of "Linear" Polymers, 243
 - 8.3.3 Epitaxy of Helical Polymers, 245
 - 8.3.4 Polymer/Polymer Epitaxy, 250
- 8.4 Epitaxial Crystallization: Further Issues and Examples, 252
 - 8.4.1 Topographic versus Lattice Matching, 252
 - 8.4.2 Epitaxy of Isotactic Polypropylene on Isotactic Polyvinylcyclohexane, 254
 - 8.4.3 Epitaxy Involving Fold Surfaces of Polymer Crystals, 254
- 8.5 Epitaxial Crystallization: Some Issues and Applications, 256
 - 8.5.1 Epitaxial Crystallization and the Design of New Nucleating Agents, 256
 - 8.5.2 Epitaxial Crystallization and the Design of Composite Materials, 257
 - 8.5.3 Conformational and Packing Energy Analysis of Polymer Epitaxy, 258
 - 8.5.4 Epitaxy as a Means to Generate Oriented Opto- or Electroactive Materials, 259
- 8.6 Conclusions, 260

References, 262

9 Melting

Marek Pyda

265

- 9.1 Introduction to the Melting of Polymer Crystals, 265
- 9.2 Parameters of the Melting Process, 267
- 9.3 Change of Conformation, 268
- 9.4 Heat of Fusion and Degree of Crystallinity, 270
 - 9.4.1 Heat of Fusion, 270
 - 9.4.2 Degree of Crystallinity, 272
- 9.5 Equilibrium Melting, 274
 - 9.5.1 The Equilibrium Melting Temperature, 274
 - 9.5.2 The Equilibrium Thermodynamic Functions, 275
- 9.6 Other Factors Affecting the Melting Process of Polymer Crystals, 277
 - 9.6.1 The Influence of the Polymer's Chemical Structure on the Melting Process, 277
 - 9.6.2 The Effect of Polymer Molar Mass on the Melting Behavior, 277
 - 9.6.3 Influence of Heating Rate on the Melting, 278

x CONTENTS

- 9.6.4 Multiple Melting Peaks of Polymers, 279
- 9.6.5 Influence of Pressure on the Melting Process, 281
- 9.6.6 The Melting Process by Other Methods, 281
- 9.6.7 Diluents Effect: The Influence of Small Diluents on the Melting Process, 282
- 9.7 Irreversible and Reversible Melting, 282

9.8 Conclusions, 284

References, 285

10 Crystallization of Polymer Blends

Mariano Pracella

- 10.1 General Introduction, 287
- 10.2 Thermodynamics of Polymer Blends, 288 10.2.1 General Principles, 288
- 10.3 Miscible Polymer Blends, 290
 - 10.3.1 Introduction, 290
 - 10.3.2 Phase Morphology, 291
 - 10.3.3 Crystal Growth Rate, 292
 - 10.3.4 Overall Crystallization Kinetics, 294
 - 10.3.5 Melting Behavior, 295
 - 10.3.6 Blends with Partial Miscibility, 296
 - 10.3.7 Crystallization Behavior of Amorphous/Crystalline Blends, 297
 - 10.3.8 Crystallization Behavior of Crystalline/Crystalline Blends, 298
- 10.4 Immiscible Polymer Blends, 303
 - 10.4.1 Introduction, 303
 - 10.4.2 Morphology and Crystal Nucleation, 303
 - 10.4.3 Crystal Growth Rate, 304
 - 10.4.4 Crystallization Behavior of Immiscible Blends, 305
- 10.5 Compatibilized Polymer Blends, 307
 - 10.5.1 Compatibilization Methods, 307
 - 10.5.2 Morphology and Phase Interactions, 308
 - 10.5.3 Crystallization Behavior of Compatibilized Blends, 311
- 10.6 Polymer Blends with Liquid-Crystalline Components, 314
 - 10.6.1 Introduction, 314
 - 10.6.2 Mesomorphism and Phase Transition Behavior of Liquid Crystals and Liquid Crystal Polymers, 314
 - 10.6.3 Crystallization Behavior of Polymer/LC Blends, 316
 - 10.6.4 Crystallization Behavior of Polymer/LCP Blends, 317
- 10.7 Concluding Remarks, 320

Abbreviations, 321

References, 322

11 Crystallization in Copolymers

Sheng Li and Richard A. Register

- 11.1 Introduction, 327
- 11.2 Crystallization in Statistical Copolymers, 328
 - 11.2.1 Flory's Model, 328
 - 11.2.2 Solid-State Morphology, 330
 - 11.2.3 Mechanical Properties, 334
 - 11.2.4 Crystallization Kinetics, 335
 - 11.2.5 Statistical Copolymers with Two Crystallizable Units, 337
 - 11.2.6 Crystallization Thermodynamics, 337

327

- 11.3 Crystallization of Block Copolymers from Homogeneous or Weakly Segregated Melts, 340
 - 11.3.1 Solid-State Morphology, 340
 - 11.3.2 Crystallization-Driven Structure Formation, 342
- 11.4 Summary, 343
- References, 344

12 Crystallization in Nano-Confined Polymeric Systems

347

Alejandro J. Müller, Maria Luisa Arnal, and Arnaldo T. Lorenzo

- 12.1 Introduction, 347
- 12.2 Confined Crystallization in Block Copolymers, 348
 - 12.2.1 Crystallization within Diblock Copolymers that are Strongly Segregated or Miscible and Contain only One Crystallizable Component, 351
 - 12.2.2 Crystallization within Strongly Segregated Double-Crystalline Diblock Copolymers and Triblock Copolymers, 355
- 12.3 Crystallization of Droplet Dispersions and Polymer Layers, 361
- 12.4 Polymer Blends, 368
 - 12.4.1 Immiscible Polymer Blends, 368
 - 12.4.2 Melt Miscible Blends, 371
- 12.5 Modeling of Confined Crystallization of Macromolecules, 371
- 12.6 Conclusions, 372
- References, 372

13 Crystallization in Polymer Composites and Nanocomposites

- Ewa Piorkowska
- 13.1 Introduction, 379
- 13.2 Microcomposites with Particulate Fillers, 380
- 13.3 Fiber-Reinforced Composites, 382
- 13.4 Modeling of Crystallization in Fiber-Reinforced Composites, 385
- 13.5 Nanocomposites, 388
- 13.6 Conclusions, 393

Appendix, 393

References, 394

14 Flow-Induced Crystallization

Gerrit W.M. Peters, Luigi Balzano, and Rudi J.A. Steenbakkers

- 14.1 Introduction, 399
- 14.2 Shear-Induced Crystallization, 401
 - 14.2.1 Nature of Crystallization Precursors, 405
- 14.3 Crystallization during Drawing, 407
 - 14.3.1 Spinning, 408
 - 14.3.2 Elongation-Induced Crystallization; Lab Conditions, 409
- 14.4 Models of Flow-Induced Crystallization, 410
 - 14.4.1 Flow-Enhanced Nucleation, 411
 - 14.4.2 Flow-Induced Shish Formation, 419
 - 14.4.3 Application to Injection Molding, 421
- 14.5 Concluding Remarks, 426

References, 427

399

xii CONTENTS

15 Crystallization in Processing Conditions

Jean-Marc Haudin

- 15.1 Introduction, 433
- 15.2 General Effects of Processing Conditions on Crystallization, 433
 - 15.2.1 Effects of Flow, 433
 - 15.2.2 Effects of Pressure, 435
 - 15.2.3 Effects of Cooling Rate, 436
 - 15.2.4 Effects of a Temperature Gradient, 437
 - 15.2.5 Effects of Surfaces, 439
- 15.3 Modeling, 440
 - 15.3.1 General Framework, 440
 - 15.3.2 Simplified Expressions, 441
 - 15.3.3 General Systems of Differential Equations, 441
- 15.4 Crystallization in Some Selected Processes, 442
 - 15.4.1 Cast Film Extrusion, 442
 - 15.4.2 Fiber Spinning, 445
 - 15.4.3 Film Blowing, 448
 - 15.4.4 Injection Molding, 454
- 15.5 Conclusion, 458

References, 459

Index