Principles of Development Sixth Edition

Lewis Wolpert | Cheryll Tickle | Alfonso Martinez Arias Peter Lawrence James Locke

Contents

Preface	v	1.13 Indu
Learning from this book	vii	each other
About the authors	х	signaling p
List of boxes	xxiii	1.14 The
Reviewer acknowledgments	xxv	state of the 1.15 Path information
Chapter 1 History and basic concepts	1	🖬 Medical
The origins of developmental biology	З	1.16 Late
1.1 Aristotle first defined the problem of epigenesis versus preformation	З	1.17 Loca cell division
Box 1A Basic stages of <i>Xenopus laevis</i> development	4	1.18 The
1.2 Cell theory changed how people thought about embryonic development and heredity	4	a descriptiv 1.19 The
1.3 Two main types of development were originally proposed	6	means
Cell Biology Box 1B The mitotic cell cycle	7	1.20 The
1.4 The discovery of induction showed that one group of cells could determine the development of neighboring cells	8	1.21 Dev
1.5 Developmental biology emerged from the coming together of genetics and embryology	8	Summary Summary
1.6 Development is studied mainly through selected model organisms	9	Chaptor
1.7 The first developmental genes were identified as	11	body pla
Summarv	13	
A conceptual tool kit	13	svncvtium
1.8 Development involves the emergence of pattern, change in form, cell differentiation, and growth	14	2.2 Cellul
Cell Biology Box 1C Germ layers	15	2.3 After
1.9 Cell behavior provides the link between gene action and developmental processes	17	several larv metamorph
1.10 Genes control cell behavior by specifying which proteins are made	17	2.4 Many through lar
1.11 The expression of developmental genes is under tight control	19	Experiment Experime
Experimental Box 1D Visualizing gene expression		Summary
in embryos	20	Setting u
1.12 Development is progressive and the fates of cells become determined at different times	22	2.5 The bis still a sw

v	1.13 Inductive interactions make cells different from each other	24
vii		64
x	signaling pathways	26
xiii	1.14 The response to inductive signals depends on the	
xv	state of the cell	26
	1.15 Patterning can involve the interpretation of positional information	27
1	Medical Box 1F When development goes awry	28
З	1.16 Lateral inhibition can generate spacing patterns	30
З	1.17 Localization of cytoplasmic determinants and asymmetric cell division can make daughter cells different from each other	30
4	1.18 The embryo contains a generative rather than	
	a descriptive program	32
4	1.19 The reliability of development is achieved by various	
6	means	32
7	1.20 The complexity of embryonic development is due	
•	to the complexity of cells themselves	33
8	1.21 Development is a central element in evolution	33
	Summary	34
8	Summary to Chapter 1	35
9	Chapter 2 Development of the Drosophila	
	body plan	37
11	Drosophila life cycle and overall development	38
13	2.1 The early <i>Drosophila</i> embryo is a multinucleate	
13	syncytium	38
	2.2 Cellularization is followed by gastrulation and	
14	segmentation	40
15	2.3 After hatching, the <i>Drosophila</i> larva develops through several larval stages, pupates, and then undergoes	
17	metamorphosis to become an adult	41
	2.4 Many developmental genes were identified in Drosophila	
17	through large-scale genetic screening for induced mutations	42
	Experimental Box 2A Mutagenesis and genetic screening	
19	strategy for identifying developmental mutants in Drosophila	43
	Summary	44
20	Setting up the body axes	44
	2.5 The body axes are set up while the <i>Drosophila</i> embryo	
22	is still a syncytium	45

2.6 Maternal factors set up the body axes and direct the		Summary
early stage of Drosophila development	46	Segmentati
2.7 Three classes of maternal genes specify the		2.23 Expre
antero-posterior axis	47	of a paraseg
2.8 Bicoid protein provides an antero-posterior gradient of a		restriction
morphogen	48	2.24 Segm
2.9 The posterior pattern is controlled by the gradients	50	2.25 Signa
2 10 The enteries and electeries extremities of the embryo	50	and pattern
are specified by activation of a cell-surface receptor	51	E Cell Biolo
2.11 The dorso-ventral polarity of the embryo is specified by		clues to the
localization of maternal proteins in the egg vitelline envelope	52	Summary
2.12 Positional information along the dorso-ventral axis		Specificatio
is provided by the Dorsal protein	53	2.26 Segm
Cell Biology Box 2B The Toll signaling pathway: a	F 4	2.27 Home
multifunctional pathway	54	responsible
Summary	54	2.28 The A
Localization of maternal determinants during oogenesis	55	of anterior r
2.13 The antero-posterior axis of the <i>Drosophila</i> egg is		2.29 The c
specified by signals from the preceding egg chamber and by		order of gen
	50	2.30 The l
Cell Biology Box 2C The JAK-STAT signaling pathway	58	than the Ho
2.14 Localization of maternal mRNAs to either end of the egg depends on the reorganization of the occyte cytoskeleton	58	Summary
2.15 The dorso-ventral axis of the egg is specified by		Summary t
movement of the oocyte nucleus followed by signaling		Chapter 2
between oocyte and follicle cells	60	and exner
Summary	61	Vertehrate
Patterning the early embryo	62	31 The fre
2.16 The expression of zygotic genes along the dorso-ventral		studving de
axis is controlled by Dorsal protein	62	3.2 The ze
2.17 The Decapentaplegic protein acts as a morphogen to		of yolk
pattern the dorsal region	64	3.3 Birds a
2.18 The antero-posterior axis is divided up into broad		Xenopus in
regions by gap gene expression	66	3.4 The ea
2.19 Bicoid protein provides a positional signal for the	67	overlying a
2 20 The and include hunchback	07	3.5 The m
represses other gap genes	68	involves the extra-embry
Experimental Box 2D Targeted gene expression and		Experimen
misexpression screening	69	developme
Summary	70	3.6 Gene e
Activation of the pair-rule genes and the establishment		nucleic acid
of parasegments	71	u Experim
2.21 Parasegments are delimited by expression of pair-rule		microarrays
genes in a periodic pattern	71	3.7 Fate n
2.22 Gap gene activity positions stripes of pair-rule gene	77	in which pa
expression	73	adult Struct

		Summary	75
	46	Segmentation genes and segment patterning	75
	47	2.23 Expression of the <i>engrailed</i> gene defines the boundary of a parasegment, which is also a boundary of cell lineage restriction	76
	48	2.24 Segmentation genes stabilize parasegment boundaries	77
	50	2.25 Signals generated at the parasegment boundary delimit and pattern the future segments	78
	- 1	Cell Biology Box 2E The Hedgehog signaling pathway	80
	51	Experimental Box 2F Mutants in denticle pattern provided clues to the logic of segment patterning	81
	52	Summary	83
	53	Specification of segment identity	83
		2.26 Segment identity in <i>Drosophila</i> is specified by Hox genes	84
	54 54	2.27 Homeotic selector genes of the bithorax complex are responsible for diversification of the posterior segments	85
	55	2.28 The Antennapedia complex controls specification of anterior regions	86
	56	2.29 The order of Hox gene expression corresponds to the order of genes along the chromosome	87
ą	58	2.30 The <i>Drosophila</i> head region is specified by genes other than the Hox genes	87
3	58	Summary Summary to Chapter 2	88 89
	60	Chapter 3 Vertebrate development I: life cycles and experimental techniques	94
	61	Vertebrate life cycles and outlines of development	95
1	62	3.1 The frog <i>Xenopus laevis</i> is the model amphibian for studying development of the body plan	98
	62	3.2 The zebrafish embryo develops around a large mass of yolk	102
	66	3.3 Birds and mammals resemble each other and differ from <i>Xenopus</i> in some important features of early development	105
	67	3.4 The early chicken embryo develops as a flat disc of cells overlying a massive yolk	106
	68	3.5 The mouse egg has no yolk and early development involves the allocation of cells to form the placenta and extra-embryonic membranes	110
	69	Experimental approaches to studying vertebrate development	115
	70	3.6 Gene expression in embryos can be mapped by <i>in situ</i> nucleic acid hybridization	116
	71	 Experimental Box 3A Gene-expression profiling by DNA microarrays and RNA seq 	117
	71	3.7 Fate mapping and lineage tracing reveal which cells in which parts of the early embryo give rise to particular	
	73	adult structures	118

3.8 Not all techniques are equally applicable to all vertebrates	12
3.9 Developmental genes can be identified by spontaneous	
mutation and by large-scale mutagenesis screens	12
Experimental Box 3B Large-scale mutagenesis screens for recessive mutations in zebrafish	12
3.10 Transgenic techniques enable animals to be produced with mutations in specific genes	12
Experimental Box 3C The Cre/loxP system: a strategy for making gene knock-outs in mice	12
Experimental Box 3D The CRISPR-Cas9 genome-editing system	12
3.11 Gene function can also be tested by transient transgenesis and gene silencing	13
Human embryonic development	13
3.12 The early development of a human embryo is similar to that of the mouse	13
Medical Box 3E Preimplantation genetic diagnosis	13
3.13 The timing of formation and the anatomy of the	
human placenta differs from that in the mouse	13
3.14 Some studies of human development are possible but are subject to strict laws	13
Box 3F Identical twins	13
Summary to Chapter 3	13
Chapter 4 Vertebrate development II: <i>Xenopus</i> and zebrafish	14
Chapter 4 Vertebrate development II: <i>Xenopus</i> and zebrafish Setting up the body axes	14
Chapter 4 Vertebrate development II: Xenopus and zebrafish Setting up the body axes 4.1 The animal-vegetal axis is maternally determined	14 7
 Chapter 4 Vertebrate development II: Xenopus and zebrafish Setting up the body axes 4.1 The animal-vegetal axis is maternally determined in Xenopus 	14 14
 Chapter 4 Vertebrate development II: Xenopus and zebrafish Setting up the body axes 4.1 The animal-vegetal axis is maternally determined in Xenopus Cell Biology Box 4A Intercellular protein signals in vertebrate development 	14 14 14 14
Chapter 4 Vertebrate development II: Xenopus and zebrafish Setting up the body axes 4.1 The animal-vegetal axis is maternally determined in Xenopus ■ Cell Biology Box 4A Intercellular protein signals in vertebrate development ■ Cell Biology Box 4B The Wnt/β-catenin signaling pathway	14 14 14 14
Chapter 4 Vertebrate development II: Xenopus and zebrafish Setting up the body axes 4.1 The animal-vegetal axis is maternally determined in Xenopus ■ Cell Biology Box 4A Intercellular protein signals in vertebrate development ■ Cell Biology Box 4B The Wnt/β-catenin signaling pathway 4.2 Local activation of Wnt/β-catenin signaling specifies the future dorsal side of the embryo	14 14 14 14 14
Chapter 4 Vertebrate development II: Xenopus and zebrafish Setting up the body axes 4.1 The animal-vegetal axis is maternally determined in Xenopus ■ Cell Biology Box 4A Intercellular protein signals in vertebrate development ■ Cell Biology Box 4B The Wnt/β-catenin signaling pathway 4.2 Local activation of Wnt/β-catenin signaling specifies the future dorsal side of the embryo 4.3 Signaling centers develop on the dorsal side of the	147 14 14 14 14 14
 Chapter 4 Vertebrate development II: Xenopus and zebrafish Setting up the body axes 4.1 The animal-vegetal axis is maternally determined in Xenopus Cell Biology Box 4A Intercellular protein signals in vertebrate development Cell Biology Box 4B The Wnt/β-catenin signaling pathway 4.2 Local activation of Wnt/β-catenin signaling specifies the future dorsal side of the embryo 4.3 Signaling centers develop on the dorsal side of the blastula 	147 14 14 14 14 14
Chapter 4 Vertebrate development II: Xenopus and zebrafish Setting up the body axes 4.1 The animal-vegetal axis is maternally determined in Xenopus ■ Cell Biology Box 4A Intercellular protein signals in vertebrate development ■ Cell Biology Box 4B The Wnt/β-catenin signaling pathway 4.2 Local activation of Wnt/β-catenin signaling specifies the future dorsal side of the embryo 4.3 Signaling centers develop on the dorsal side of the blastula Summary	14 ; 14 14 14 14 14 14 14; 14;
Chapter 4 Vertebrate development II: Xenopus and zebrafish Setting up the body axes 4.1 The animal-vegetal axis is maternally determined in Xenopus ■ Cell Biology Box 4A Intercellular protein signals in vertebrate development ■ Cell Biology Box 4B The Wnt/β-catenin signaling pathway 4.2 Local activation of Wnt/β-catenin signaling specifies the future dorsal side of the embryo 4.3 Signaling centers develop on the dorsal side of the blastula Summary The origin and specification of the germ layers	14 ; 14 14 14 14 14 14; 15; 15;
Chapter 4 Vertebrate development II: Xenopus and zebrafish Setting up the body axes 4.1 The animal-vegetal axis is maternally determined in Xenopus Cell Biology Box 4A Intercellular protein signals in vertebrate development Cell Biology Box 4B The Wnt/β-catenin signaling pathway 4.2 Local activation of Wnt/β-catenin signaling specifies the future dorsal side of the embryo 4.3 Signaling centers develop on the dorsal side of the blastula Summary The origin and specification of the germ layers 4.4 The fate map of the Xenopus blastula makes clear	147 14 14 14 14 14 14 15 15
Chapter 4 Vertebrate development II: Xenopus and zebrafish Setting up the body axes 4.1 The animal-vegetal axis is maternally determined in Xenopus ■ Cell Biology Box 4A Intercellular protein signals in vertebrate development ■ Cell Biology Box 4B The Wnt/β-catenin signaling pathway 4.2 Local activation of Wnt/β-catenin signaling specifies the future dorsal side of the embryo 4.3 Signaling centers develop on the dorsal side of the blastula Summary The origin and specification of the germ layers 4.4 The fate map of the Xenopus blastula makes clear the function of gastrulation	147 14 14 14 14 14 14 15 15 15
Chapter 4 Vertebrate development II: Xenopus and zebrafish Setting up the body axes 4.1 The animal-vegetal axis is maternally determined in Xenopus Cell Biology Box 4A Intercellular protein signals in vertebrate development Cell Biology Box 4B The Wnt/β-catenin signaling pathway 4.2 Local activation of Wnt/β-catenin signaling specifies the future dorsal side of the embryo 4.3 Signaling centers develop on the dorsal side of the blastula Summary The origin and specification of the germ layers 4.4 The fate map of the Xenopus blastula makes clear the function of gastrulation 4.5 Cells of the early Xenopus embryo do not yet have their fates determined and regulation is possible	147 14 14 14 14 14 14 15 15 15 15
Chapter 4 Vertebrate development II: Xenopus and zebrafish Setting up the body axes 4.1 The animal-vegetal axis is maternally determined in Xenopus Cell Biology Box 4A Intercellular protein signals in vertebrate development Cell Biology Box 4B The Wnt/β-catenin signaling pathway 4.2 Local activation of Wnt/β-catenin signaling specifies the future dorsal side of the embryo 4.3 Signaling centers develop on the dorsal side of the blastula Summary The origin and specification of the germ layers 4.4 The fate map of the Xenopus blastula makes clear the function of gastrulation 4.5 Cells of the early Xenopus embryo do not yet have their fates determined and regulation is possible 4.6 Endoderm and ectoderm are specified by maternal factors, whereas mesoderm is induced from ectoderm by	141 14 14 14 14 14 15 15 15 15
Chapter 4 Vertebrate development II: Xenopus and zebrafish Setting up the body axes 4.1 The animal-vegetal axis is maternally determined in Xenopus ■ Cell Biology Box 4A Intercellular protein signals in vertebrate development ■ Cell Biology Box 4B The Wnt/β-catenin signaling pathway 4.2 Local activation of Wnt/β-catenin signaling specifies the future dorsal side of the embryo 4.3 Signaling centers develop on the dorsal side of the blastula Summary The origin and specification of the germ layers 4.4 The fate map of the Xenopus blastula makes clear the function of gastrulation 4.5 Cells of the early Xenopus embryo do not yet have their fates determined and regulation is possible 4.6 Endoderm and ectoderm are specified by maternal factors, whereas mesoderm is induced from ectoderm by signals from the vegetal region	147 14 14 14 14 14 15 15 15 15 15
Chapter 4 Vertebrate development II: Xenopus and zebrafish Setting up the body axes 4.1 The animal-vegetal axis is maternally determined in Xenopus Cell Biology Box 4A Intercellular protein signals in vertebrate development Cell Biology Box 4B The Wnt/β-catenin signaling pathway 4.2 Local activation of Wnt/β-catenin signaling specifies the future dorsal side of the embryo 4.3 Signaling centers develop on the dorsal side of the blastula Summary The origin and specification of the germ layers 4.4 The fate map of the Xenopus blastula makes clear the function of gastrulation 4.5 Cells of the early Xenopus embryo do not yet have their fates determined and regulation is possible 4.6 Endoderm and ectoderm are specified by maternal factors, whereas mesoderm is induced from ectoderm by signals from the vegetal region Cell Biology Box 4C Signaling by members of the TGF-β family of growth factors	141 14 14 14 14 14 15 15 15 15 15 15 15 15

20	4.7 Mesoderm induction occurs during a limited period in the blastula stage	155
21	4.8 Zygotic gene expression is turned on at the mid-blastula transition	156
23	4.9 Mesoderm-inducing and patterning signals are produced by the vegetal region, the organizer, and the ventral mesoderm	157
24	4.10 Members of the TGF- β family have been identified as mesoderm inducers	158
27	E Experimental Box 4D Investigating receptor function using dominant-negative proteins	159
8	4.11 The zygotic expression of mesoderm-inducing and patterning signals is activated by the combined actions of maternal VegT and Wnt signaling	159
1	4.12 Threshold responses to gradients of signaling proteins are likely to pattern the mesoderm	161
1	Summary	162
<u>л</u>	The Spemann organizer and neural induction	163
5	Cell Biology Box 4E The fibroblast growth factor signaling pathway	163
6	4.13 Signals from the organizer pattern the mesoderm dorso-ventrally by antagonizing the effects of ventral signals	164
7 8	4.14 The antero-posterior axis of the embryo emerges during gastrulation	165
-	4.15 The neural plate is induced in the ectoderm	168
2	4.16 The nervous system is patterned along the antero-posterior axis by signals from the mesoderm	170
З	4.17 The final body plan emerges by the end of gastrulation and neurulation	171
З	Summary	172
	Development of the body plan in zebrafish	172
5 6	4.18 The body axes in zebrafish are established by maternal determinants	173
_	4.19 The germ layers are specified in the zebrafish blastoderm	
7	by similar signals to those in <i>Xenopus</i>	173
0	4.20 The shield in zebrafish is the embryonic organizer	176
- -	Box 4F A zebrafish gene regulatory network	176
0 0	Summary to Chapter 4	178
•	Chapter 5 Vertebrate development III: chick and	
1	mouse-completing the body plan	183
2	generation of the spinal cord	184
2	5.1 The antero-posterior polarity of the chick blastoderm is related to the primitive streak	184
5	5.4 Early stages in mouse development establish separate cell lineages for the embryo and the extra-embryonic structures	405
	כוותרוחובי	TRP

5.3 Movement of the anterior visceral endoderm indicates	
the definitive antero-posterior axis in the mouse embryo	190
5.4 The fate maps of vertebrate embryos are variations on	
a basic plan	192
Cell Biology Box 5A Fine-tuning Nodal signaling	193
5.5 Mesoderm induction and patterning in the chick	
and mouse occurs during primitive streak formation	195
5.6 The node that develops at the anterior end of the streak	
in chick and mouse embryos is equivalent to the Spemann	105
5 7 Noural induction in chick and mouse is initiated by ECC	190
signaling with inhibition of BMP signaling being required in	
a later step	198
Cell Biology Box 5B Chromatin-remodeling complexes	201
5.8 Axial structures in chick and mouse are generated from	
self-renewing cell populations	202
Summary	204
Somite formation and antero-posterior patterning	205
Cell Biology Box 5C Retinoic acid: a small-molecule	
intercellular signal	206
5.9 Somites are formed in a well-defined order along	
the antero-posterior axis	206
Cell Biology Box 5D The Notch signaling pathway	211
5.10 Identity of somites along the antero-posterior axis is	
specified by Hox gene expression	213
Box 5E The Hox genes	214
5.11 Deletion or overexpression of Hox genes causes changes in axial patterning	217
5.12 Hox gene expression is activated in an anterior	
to posterior pattern	219
5.13 The fate of somite cells is determined by signals from	
the adjacent tissues	221
	223
The origin and patterning of neural crest	223
5.14 Neural crest cells arise from the borders of the neural plate	2
	223
the branchial arches	225
Summary	225
Determination of left-right asymmetry	220
5 16 The bilatoral summetry of the early embry is bully	221
to produce left-right asymmetry of internal organs	227
5.17 Left-right symmetry breaking may be initiated within	/
cells of the early embryo	229
Summary	230
Summary to Chapter 5	220

Chapter 6 Development of nematodes and sea urchins	235
Nematodes	236
Cell Biology Box 6A Apoptotic pathways in nematodes, <i>Drosophila</i> , and mammals	238
6.1 The cell lineage of <i>Caenorhabditis elegans</i> is largely invariant	239
6.2 The antero-posterior axis in <i>Caenorhabditis elegans</i> is determined by asymmetric cell division	239
Experimental Box 6B Gene silencing by antisense RNA and RNA interference	241
6.3 The dorso-ventral axis in <i>Caenorhabditis elegans</i> is determined by cell-cell interactions	242
6.4 Both asymmetric divisions and cell-cell interactions specify cell fate in the early nematode embryo	245
6.5 Cell differentiation in the nematode is closely linked to the pattern of cell division	246
6.6 Hox genes specify positional identity along the antero-posterior axis in <i>Caenorhabditis elegans</i>	247
6.7 The timing of events in nematode development is under genetic control that involves microRNAs	248
Box 6C Gene silencing by microRNAs	250
6.8 Vulval development is initiated through the induction of a small number of cells by short-range signals from a single	751
	251
Echinoderms	200
6.9 The sea urchin embryo develops into a free-swimming arva	254
6.10 The sea urchin egg is polarized along the animal-vegetal axis	256
5.11 The sea urchin fate map is finely specified, yet considerable regulation is possible	257
6.12 The vegetal region of the sea urchin embryo acts as an organizer	258
6.13 The sea urchin vegetal region is demarcated by the nuclear accumulation of β -catenin	260
5.14 The animal-vegetal axis and the oral-aboral axis can be considered to correspond to the	
antero-posterior and dorso-ventral axes of other deuterostomes	261
6.15 The pluteus skeleton develops from the primary mesenchyme	262
5.16 The oral-aboral axis in sea urchins is related to the plane of the first cleavage	263
5.17 The oral ectoderm acts as an organizing region for the oral-aboral axis	264

Experimental Box 6D The gene regulatory network for	265	7.15 Gastrula
sea urchin endomesoderm specification	265	ingression thro
Summary	200	Summarv
Summary to Chapter 6	207	Neural tube 1
Chapter 7 Morphogenesis: change in form in		7.16 Neural 1
the early embryo	271	shape and con
Cell adhesion	273	Cell Biology
Cell Biology Box 7A Cell-adhesion molecules and cell	774	Medical Bo
	274	Summary
7.1 Sorting out of dissociated cells demonstrates differences in cell adhesiveness in different tissues	275	Formation of
72 Cadherins can provide adhesive specificity	276	7.17 The Dro
73 The activity of the cytoskeleton regulates the mechanical	2/0	branching mor
properties of cells and their interactions with each other	277	7.18 The ver
Cell Biology Box 7B The cytoskeleton, cell-shape change,		
and cell movement	278	vessels in and
7.4 Transitions of tissues from an epithelial to a mesenchymal		Summary
state, and vice versa, involve changes in adhesive junctions	279	Cell migratio
Summary	280	7.20 Embryo
leavage and formation of the blastula	280	of different ce
7.5 The orientation of the mitotic spindle determines the	201	7.21 Neural
plane of cleavage at cell division	281	environmenta
7.6 The positioning of the spindle within the cell also determines whether daughter cells will be the same or different		7.22 The for
sizes	283	fishes is an ex
7.7 Cells become polarized in the sea urchin blastula and		7.23 Body w
the mouse morula	285	Summary
7.8 Fluid accumulation as a result of tight-junction		Summary to
formation and ion transport forms the blastocoel of	797	Summary to
	207	Chapter 8
Summary	200	
79 Costrulation in the secure bin involves an epithelial te	209	provides a frag
mesenchymal transition, cell migration, and invagination of the		The control of
blastula wall	289	8.1 Control of
7.10 Mesoderm invagination in <i>Drosophila</i> is due to changes		tissue-specifi
in cell shape controlled by genes that pattern the		8.2 Gene ex
dorso-ventral axis	293	modifications
7.11 Germ-band extension in <i>Drosophila</i> involves myosin-	205	
712 Planar cell polarity confers directionality on a tissue	295	by chromatin
7.13 Gastrulation in amphibians and fish involves involution	230	8.3 Patterns
epiboly, and convergent extension	299	of gene-regul
Box 7C Convergent extension	302	modifications
7.14 Xenopus notochord development illustrates the		8.4 Changes
dependence of medio-lateral cell elongation and cell		be triggered t
intercalation on a pre-existing antero-posterior polarity	305	Summary

ork for	265 265	7.15 Gastrulation in chick and mouse embryos involves the separation of individual cells from the epiblast and their ingression through the primitive streak	306
	267	Summary	309
	207	Neural tube formation	311
n in		7.16 Neural tube formation is driven by changes in cell	
	271	shape and convergent extension	311
	273	Cell Biology Box 7D Eph receptors and their ephrin ligands	313
d cell		Medical Box 7E Neural tube defects	314
	274	Summary	315
ifferences	275	Formation of tubes and branching morphogenesis	316
	275 276	7.17 The <i>Drosophila</i> tracheal system is a prime example of branching morphogenesis	316
mechanical other	277	7.18 The vertebrate vascular system develops by vasculogenesis followed by sprouting angiogenesis	318
e change,	270	7.19 New blood vessels are formed from pre-existing	
	270	vessels in angiogenesis	319
esenchyman Inctions	279	Summary	320
	280	Cell migration	320
es the	280	7.20 Embryonic neural crest gives rise to a wide range of different cell types	321
les the	281	7.21 Neural crest migration is controlled by environmental cues	321
or different	283	7.22 The formation of the lateral-line primordium in fishes is an example of collective cell migration	323
la and	205	7.23 Body wall closure occurs in <i>Drosophila</i> , <i>Caenorhabditis</i> , mammals, and chick	324
	200	Summary	325
		Summary to Chapter 7	326
	287		
	288	Chapter 8 Cell differentiation and stem cells	333
	289	Box 8A Conrad Waddington's 'epigenetic landscape'	
nelial-to-		provides a framework for thinking about how cells differentiate	335
ation of the		The control of gene expression	337
o changes	289	8.1 Control of transcription involves both general and tissue-specific transcriptional regulators	338
	293	8.2 Gene expression is also controlled by epigenetic chemical modifications to DNA and histone proteins that alter chromatin	⊃41
myosin-	205	Structure	341
i tissue	295 296	by chromatin modification	344
involution,	299	8.3 Patterns of gene activity can be inherited by persistence of gene-regulatory proteins or by maintenance of chromatin modifications	347
the	302	8.4 Changes in patterns of gene activity during differentiation to be triggered by extracellular signals	can 348
 	205		340
rity	305	Sammary	743

Cell differentiation and stem cells	350
8.5 Muscle differentiation is determined by the MyoD family	
of transcription factors	350
8.6 The differentiation of muscle cells involves withdrawal	
from the cell cycle, but is reversible	352
8.7 All blood cells are derived from multipotent stem cells	354
8.8 Intrinsic and extrinsic changes control differentiation of the hematopoietic lineages	357
Experimental Box 8C Single-cell analysis of cell-fate decisions	358
8.9 Developmentally regulated globin gene expression is controlled by control regions far distant from the coding regions	361
8.10 The epidermis of adult mammalian skin is continually being replaced by derivatives of stem cells	363
Medical Box 8D Treatment of junctional epidermolysis	
bullosa with skin grown from genetically corrected	266
stem cells	300
8.11 Stem cells use different modes of division to maintain tissues	367
8.12 The lining of the gut is another epithelial tissue that requires continuous renewal	368
8.13 Skeletal muscle and neural cells can be renewed from stem cells in adults	370
8.14 Embryonic stem cells can proliferate and differentiate into many cell types in culture and contribute to normal development <i>in vivo</i>	372
Experimental Box 8E The derivation and culture of mouse	
embryonic stem cells	374
Summary	375
The plasticity of the differentiated state	376
8.15 Nuclei of differentiated cells can support development	376
8.16 Patterns of gene activity in differentiated cells can be changed by cell fusion	378
8.17 The differentiated state of a cell can change by	
transdifferentiation	379
8.18 Adult differentiated cells can be reprogrammed to form pluripotent stem cells	381
Experimental Box 8F Induced pluripotent stem cells	382
8.19 Stem cells could be a key to regenerative medicine	382
Experimental Box 8G Stem cells can be cultured in vitro to produce 'organoids'—structures that mimic tissues and	
organs	386
8.20 Various approaches can be used to generate	
differentiated cells for cell-replacement therapies	388
Summary	391
Summary to Chapter 8	391

D	Chapter 9 Germ cells, fertilization,	
	and sex determination	397
0	The development of germ cells	398
2	9.1 Germ cell fate is specified in some embryos by a distinct germplasm in the egg	399
4	9.2 In mammals germ cells are induced by cell-cell interactions during development	401
7	9.3 Germ cells migrate from their site of origin to the gonad	402
8	9.4 Germ cells are guided to their destination by chemical signals	403
	9.5 Germ cell differentiation involves a halving of chromosome number by meiosis	404
1	Box 9A Polar bodies	405
Э	9.6 Oocyte development can involve gene amplification and contributions from other cells	408
	9.7 Factors in the cytoplasm maintain the totipotency of the egg	408
6	9.8 In mammals some genes controlling embryonic growth are 'imprinted'	409
7	Summary	412
•	Fertilization	412
8	9.9 Fertilization involves cell-surface interactions between egg and sperm	413
0	9.10 Changes in the egg plasma membrane and enveloping layers at fertilization block polyspermy	415
2	9.11 Sperm-egg fusion causes a calcium wave that results in egg activation	416
	Summary	418
4	Determination of the sexual phenotype	419
'5 '6	9.12 The primary sex-determining gene in mammals is on the Y chromosome	419
6	9.13 Mammalian sexual phenotype is regulated by gonadal hormones	420
'8	9.14 The primary sex-determining factor in <i>Drosophila</i> is the number of X chromosomes and is cell autonomous	422
9	9.15 Somatic sexual development in <i>Caenorhabditis</i> is determined by the number of X chromosomes	424
31 32	9.16 Determination of germ cell sex depends on both genetic constitution and intercellular signals	425
32	9.17 Various strategies are used for dosage compensation of X-linked genes	427
	Summary	429
86	Summary to Chapter 9	431
38	Chapter 10 Organogenesis	435
91	The insect wing and leg	436
1	10.1 Imaginal discs arise from the ectoderm in the early <i>Drosophila</i> embryo	437

10.2 Imaginal discs arise across parasegment boundaries	438	10.20 Se
10.2 The adult wing emerges at metamorphosis after folding	450	ra Box 10
and evagination of the wing imaginal disc	439	10.21 Li
10.4 A signaling center at the boundary between anterior		10.22 T
and posterior compartments patterns the Drosophila wing	440	tendons is
disc along the antero-posterior axis	440	10.23 Jo
Box 10A Positional information and morphogen gradients	445	mechanica
and ventral compartments patterns the Drosophila wing		10.24 Se
along the dorso-ventral axis	445	Cell dealli
10.6 Vestigial is a key regulator of wing development that		Tooth
acts to specify wing identity and control wing growth	445	
10.7 The <i>Drosophila</i> wing disc is also patterned along		interaction
the proximo-distal axis	447	Summarv
10.8 The leg disc is patterned in a similar manner to the		Vertebrat
wing disc, except for the proximo-distal axis	448	10.26 Th
10.9 Different imaginal discs can have the same	450	m Medical
Summary	450	us about b
The vertebrate limb	452	10.27 M
10 10 The vertebrate limb develops from a limb bud and its	452	branching
development illustrates general principles	452	Summary
10.11 Genes expressed in the lateral plate mesoderm		The verte
are involved in specifying limb position, polarity, and identity	454	10.28 T
10.12 The apical ectodermal ridge is required for limb-bud		morphoge
outgrowth and the formation of structures along the proximo-		The verte
distal axis of the limb	457	10.29 D
10.13 Formation and outgrowth of the limb bud involves	150	interaction
10.14 Positional value along the provime distal axis of	400	Summary
the limb bud is specified by a combination of graded signaling		Summary
and a timing mechanism	460	Summary
10.15 The polarizing region specifies position along the limb's		Chapter
antero-posterior axis	462	Specifica
10.16 Sonic hedgehog is the polarizing region morphogen	464	11.1 Init
Medical Box 10B Too many fingers: mutations that affect		signals fro
antero-posterior patterning can cause polydactyly	465	11.2 Loc
Cell Biology Box 10C Sonic hedgehog signaling and the primary cilium	166	antero-po:
10.17 The derce ventral axis of the limb is controlled by the	400	11.3 The
ectoderm	468	
Medical Box 10D Teratogens and the consequences of		boundarie
damage to the developing embryo	470	11.5 Ho
10.18 Development of the limb is integrated by interactions		developin
between signaling centers	470	11.6 The
10.19 Hox genes have multiple inputs into the patterning		dorso-ven
of the limbs	472	and dorsa

	10.20 Self-organization may be involved in the	
38	development of the limb	475
	Box 10E Reaction-diffusion mechanisms	476
39	10.21 Limb muscle is patterned by the connective tissue	477
40	10.22 The initial development of cartilage, muscles, and tendons is autonomous	478
40 43	10.23 Joint formation involves secreted signals and mechanical stimuli	478
	10.24 Separation of the digits is the result of programmed cell death	479
45	Summary	480
A E	Teeth	481
40	10.25 Tooth development involves epithelial-mesenchymal interactions and a homeobox gene code specifies tooth identity	482
47	Summary	484
48	Vertebrate lungs	484
	10.26 The vertebrate lung develops from a bud of endoderm	484
50 50	Medical Box 10F What developmental biology can teach us about breast cancer	486
52	10.27 Morphogenesis of the lung involves three modes of	
22	branching	488
52	Summary	489
	The vertebrate heart	489
54	10.28 The development of the vertebrate heart involves morphogenesis and patterning of a mesodermal tube	489
	The vertebrate eye	492
57	10.29 Development of the vertebrate eye involves interactions between an extension of the forebrain and	
58	the ectoderm of the head	493
	Summary	497
60	Summary to Chapter 10	497
67	Chapter 11 Development of the nervous system	505
-02 	Specification of cell identity in the nervous system	507
04	11.1 Initial regionalization of the vertebrate brain involves signals from local organizers	507
65	11.2 Local signaling centers pattern the brain along the antero-posterior axis	508
66	11.3 The cerebral cortex is patterned by signals from the anterior neural ridge	509
68	11.4 The hindbrain is segmented into rhombomeres by boundaries of cell-lineage restriction	509
70	11.5 Hox genes provide positional information in the developing hindbrain	512
70	11.6 The pattern of differentiation of cells along the dorso-ventral axis of the spinal cord depends on ventral	
72	and dorsal signals	513

11.7 Neuronal subtypes in the ventral spinal cord are	
specified by the ventral to dorsal gradient of Shh	515
11.8 Spinal cord motor neurons at different dorso-ventral positions project to different trunk and limb muscles	516
11.9 Antero-posterior pattern in the spinal cord is	
determined in response to secreted signals from the node	
and adjacent mesoderm	517
Summary	518
The formation and migration of neurons	518
11.10 Neurons in <i>Drosophila</i> arise from proneural clusters	519
11.11 The development of neurons in <i>Drosophila</i> involves asymmetric cell divisions and timed changes in gene	5.24
	521
11.12 The production of vertebrate neurons involves lateral inhibition, as in <i>Drosophila</i>	522
Box 11A Specification of the sensory organs of adult <i>Drosophila</i>	52
11.13 Neurons are formed in the proliferative zone of the vertebrate neural tube and migrate outwards	524
Experimental Box 11B Timing the birth of cortical neurons	526
11.14 Many cortical interneurons migrate tangentially	528
Summary	528
Axon navigation	529
11.15 The growth cone controls the path taken by a	
growing axon	530
Box 11C The development of the neural circuit for	
the knee-jerk reflex	532
11.16 Motor neuron axons in the chick limb are guided by ephrin-Eph interactions	533
11.17 Axons crossing the midline are both attracted	
and repelled	534
11.18 Neurons from the retina make ordered connections	
with visual centers in the brain	535
Summary	538
Synapse formation and refinement	539
11.19 Synapse formation involves reciprocal interactions	539
11.20 Many motor neurons die during normal development	542
Medical Box 11D Autism: a developmental disorder that involves synapse dysfunction	543
11.21 Neuronal cell death and survival involve both intrinsic and extrinsic factors	544
11.22 The map from eye to brain is refined by neural	
activity	545
Summary	546
Summary to Chapter 11	547

;	Chapter 12 Growth, post-embryonic development, and regeneration	553
	Growth	554
;	12.1 Tissues can grow by cell proliferation, cell enlargement, or accretion	555
,	12.2 Cell proliferation is controlled by regulating entry into the cell cycle	556
}	12.3 Cell division in early development can be controlled by an intrinsic developmental program	557
)	12.4 Extrinsic signals coordinate cell division, cell growth, and cell death in the developing <i>Drosophila</i> wing	558
•	Cell Biology Box 12A The core Hippo signaling pathways in Drosophila and mammals	559
?	12.5 Cancer can result from mutations in genes that control cell proliferation	560
}	12.6 The relative contributions of intrinsic and extrinsic factors in controlling size differ in different mammalian organs	562
ļ	12.7 Overall body size depends on the extent and the duration of growth	564
;	12.8 Hormones and growth factors coordinate the growth of different tissues and organs and contribute to determining overall body size	565
}	12.9 Elongation of the long bones illustrates how growth can be determined by a combination of an intrinsic growth program and extracellular factors	566
	Box 12B Digit length ratio is determined in the embryo	568
,	12.10 The amount of nourishment an embryo receives can have profound effects in later life	570
	Summary	571
	Molting and metamorphosis	572
	12.11 Arthropods have to molt in order to grow	572
	12.12 Insect body size is determined by the rate and duration of larval growth	573
	12.13 Metamorphosis in amphibians is under hormonal control	575
	Summary	576
	Regeneration	577
	12.14 Regeneration involves repatterning of existing tissues and/or growth of new tissues	578
	12.15 Amphibian limb regeneration involves cell dedifferentiation and new growth	578
	Box 12C Regeneration in <i>Hydra</i>	580
	Box 12D Planarian regeneration	582
	12.16 Limb regeneration in amphibians depends on the presence of nerves	586
	12.17 The limb blastema gives rise to structures with positional values distal to the site of amputation	587

12.18 Retinoic acid can change proximo-distal positional	
values in regenerating limbs	589
12.19 Mammals can regenerate the tips of the digits	590
12.20 Insect limbs intercalate positional values by both	
proximo-distal and circumferential growth	591
Box 12E Why can't we regenerate our limbs?	592
12.21 Heart regeneration in zebrafish involves the	504
resumption of cell division by cardiomyocytes	594
Summary	596
Aging and senescence	597
12.22 Genes can alter the timing of senescence	598
12.23 Cell senescence blocks cell proliferation	600
12.24 Elimination of senescent cells in adult salamanders	
explains why regenerative ability does not diminish with age	601
Summary	602
Summary to Chapter 12	602
Chapter 13 Plant development	609
13.1 The model plant <i>Arabidopsis thaliana</i> has a short life	
cycle and a small diploid genome	611
Embryonic development	612
13.2 Plant embryos develop through several distinct stages	612
Box 13A Angiosperm embryogenesis	614
13.3 Gradients of the signal molecule auxin establish the embryonic apical-basal axis	616
13.4 Plant somatic cells can give rise to embryos	
and seedlings	617
13.5 Cell enlargement is a major process in plant growth and morphogenesis	619
Experimental Box 13B Plant transformation and	
genome editing	620
Summary	621
Meristems	622
13.6 A meristem contains a small, central zone of	
self-renewing stem cells	623
13.7 The size of the stem cell area in the meristem is kept constant by a feedback loop to the organizing center	623
13.8 The fate of cells from different meristem layers can be	010
changed by changing their position	624
13.9 A fate map for the embryonic shoot meristem can	
be deduced using clonal analysis	626
13.10 Meristem development is dependent on signals	
from other parts of the plant	627
13.11 Gene activity patterns the proximo-distal and adaxial-abaxial axes of leaves developing from the	
shoot meristem	628

	13.12 The regular arrangement of leaves on a stem is	
9	generated by regulated auxin transport	629
0	13.13 The outgrowth of secondary shoots is under	
	hormonal control	630
1	13.14 Root tissues are produced from <i>Arabidopsis</i> root apical	
2	meristems by a highly stereotyped pattern of cell divisions	633
	13.15 Root hairs are specified by a combination	
4	of positional information and lateral inhibition	635
6	Summary	636
7	Flower development and control of flowering	636
8	13.16 Homeotic genes control organ identity in the flower	637
0	Box 13C The basic model for the patterning of the	
	Arabidopsis flower	639
1	13.17 The Antirrhinum flower is patterned dorso-ventrally,	
2	as well as radially	640
2	13.18 The internal meristem layer can specify floral	C 41
	meristem patterning	641
9	13.19 The transition of a shoot meristem to a floral	617
	The steel is under environmental and genetic control	042
1	Box 13D The circadian clock coordinates plant growth and development	643
2	12 20 Vernalization reflects the enigenetic memory of winter	643
2	12.21 Most flowering plants are bormaphreditos, but	045
4	some produce unisexual flowers	645
	Summary	646
6	Summary to Chapter 13	647
-		
/	Chapter 14 Evolution and development	651
٩	Box 14A Darwin's finches	654
5	The evolution of development	655
0	14.1 Multicellular organisms evolved from single-celled	
1	ancestors	655
- 2	14.2 Genomic evidence is throwing light on the evolution	
-	of animals	657
з	Box 14B The metazoan family tree	658
	14.3 How gastrulation evolved is not known	659
З	14.4 More general characteristics of the body plan develop	
	earlier than specializations	660
4	14.5 Embryonic structures have acquired new functions	
	during evolution	661
6	14.6 Evolution of different types of eyes in different animal	662
	groups is an example of parallel evolution	603
7	Summary	664
	i ne diversification of body plans	665
0	14.7 Hox gene complexes have evolved through gene duplication	<i></i>
0	ouplication	200

14.8 Differences in Hox gene expression determine the variation in position and type of paired appendages in arthropods	667	14.15 Adaptive evolution within the same species provides a way of studying the developmental basis for evolutionary change	684
14.9 Changes in Hox gene expression and their target genes contributed to the evolution of the vertebrate		Experimental Box 14D Pelvic reduction in sticklebacks is based on mutations in a gene control region	686
axial skeleton	671	Summary	687
14.10 The basic body plan of arthropods and vertebrates is similar, but the dorso-ventral axis is inverted	672	Changes in the timing of developmental processes	687
Summary	673	14.16 Changes in growth can modify the basic body plan	687
The evolutionary modification of specialized characters	674	Box 14E Origins of morphological diversity in dogs	689
14.11 Limbs evolved from fins	674	14.17 Evolution can be due to changes in the timing of developmental events	690
14.12 Limbs have evolved to fulfill different specialized funct	ions 678	14.18 The evolution of life histories has implications for development	692
14.13 The evolution of limblessness in snakes is associated		Box 14F Long- and short-germ development in insects	693
with changes in axial gene expression and mutations in a limb-specific enhancer	679	Summary	695
14.14 Butterfly wing markings have evolved by		Summary to Chapter 14	696
redeployment of genes previously used for other functions	680		
Experimental Box 14C Using CRISPR-Cas9 genome-editing		Glossary	702
techniques to test the functioning of the snake ZRS	681	Index	725