Atkins' PHYSICAL CHEMISTRY

Eleventh edition

Peter Atkins

Fellow of Lincoln College, University of Oxford, Oxford, UK

Julio de Paula

Professor of Chemistry, Lewis & Clark College, Portland, Oregon, USA

James Keeler

Senior Lecturer in Chemistry and Fellow of Selwyn College, University of Cambridge, Cambridge, UK

FULL CONTENTS

Conventions	xxv	
List of tables	xxvi	
List of The chemist's toolkits	xxviii	
List of material provided as A deeper look	vviv	
List of Impacts		
	~~~	
PROLOGUE Energy, temperature.		
and chemistry	1	
FOCUS 1 The properties of gases	3	
TOPIC 1A The perfect gas	4	
1A.1 Variables of state	4	
(a) Pressure	4	
(b) Temperature	5	-
1A.2 Equations of state	6	
(a) The empirical basis	7	
(b) Mixtures of gases	9	
Checklist of concepts	10	
Checklist of equations	10	
TOPIC 1B The kinetic model	11	
1B.1 The model	11	
(a) Pressure and molecular speeds	12	
(b) The Maxwell–Boltzmann distribution of speeds	13	•
(c) Mean values	15	
1B.2 Collisions	17	
(a) The collision frequency	17	
(b) The mean free path	18	
Checklist of concepts	18	
Checklist of equations	18	
TOPIC 1C Real gases	19	
1C.1 Deviations from perfect behaviour	19	
(a) The compression factor	20	
(b) Virial coefficients	20	
(c) Critical constants	22	
1C.2 The van der Waals equation	23	-
(a) Formulation of the equation	23	
(b) The features of the equation	24	
(c) The principle of corresponding states	26	
Checklist of concepts	27	
Checklist of equations	27	
FOCUS 2 The First Law	33	
TOPIC 2A Internal energy	34	
2A.1 Work, heat, and energy	34	

(a) Operational definitions	34
(b) The molecular interpretation of heat and work	36
2A.2 The definition of internal energy	37
(a) Molecular interpretation of internal energy	37
(b) The formulation of the First Law	38
2A.3 Expansion work	38
(a) The general expression for work	39
(b) Expansion against constant pressure	39
(c) Reversible expansion	40
(d) Isothermal reversible expansion of a perfect gas	41
2A.4 Heat transactions	42
(a) Calorimetry	42
(b) Heat capacity	43
Checklist of concepts	45
Checklist of equations	45
TOPIC 2B Enthalpy	46
2B.1 The definition of enthalpy	46
(a) Enthalpy change and heat transfer	46
(b) Calorimetry	47
2B.2 The variation of enthalpy with temperature	48
(a) Heat capacity at constant pressure	48
(b) The relation between heat capacities	49
Checklist of concepts	50
Checklist of equations	50
TOPIC 2C Thermochemistry	51
2C.1 Standard enthalpy changes	51
(a) Enthalpies of physical change	51
(b) Enthalpies of chemical change	52
(c) Hess's law	53
2C.2 Standard enthalpies of formation	54
2C.3 The temperature dependence of reaction enthalpies	55
2C.4 Experimental techniques	56
(a) Differential scanning calorimetry	56
(b) Isothermal titration calorimetry	57
Checklist of concepts	57
Checklist of equations	58
<b>TOPIC 2D</b> State functions and exact differentials	59
2D.1 Exact and inexact differentials	59
2D.2 Changes in internal energy	60
(a) General considerations	60
(b) Changes in internal energy at constant pressure	62
2D.3 Changes in enthalpy	63
2D.4 The Joule-Thomson effect	64
(a) The observation of the Joule-Thomson effect	64
(b) The molecular interpretation of the Joule–Thomson effect	65
Checklist of concepts	66
Checklist of equations	66
•	~ ~

TOPIC 2E Adiabatic changes	67
2E.1 The change in temperature	67
2E.2 The change in pressure	68
Checklist of concepts	69
Checklist of equations	69

### FOCUS 3 The Second and Third Laws

TOPIC 3A Entropy	78
3A.1 The Second Law	78
3A 2 The definition of entropy	80
(a) The thermodynamic definition of entropy	80
(b) The statistical definition of entropy	81
3A.3 The entropy as a state function	82
(a) The Carnot cycle	82
(b) The thermodynamic temperature	85
(c) The Clausius inequality	85
Checklist of concepts	86
Checklist of equations	87
TOPIC 3B Entropy changes accompanying	
specific processes	88
3B.1 Expansion	88
3B.2 Phase transitions	89
3B.3 Heating	90
3B.4 Composite processes	90
Checklist of concepts	91
Checklist of equations	91
TOPIC 3C The measurement of entropy	92
3C.1 The calorimetric measurement of entropy	92
3C.2 The Third Law	93
(a) The Nernst heat theorem	93
(b) Third-Law entropies	94
(c) The temperature dependence of reaction entropy	95
Checklist of concepts	96
Checklist of equations	96
TOPIC 3D Concentrating on the system	97
3D.1 The Helmholtz and Gibbs energies	97
(a) Criteria of spontaneity	97
(b) Some remarks on the Helmholtz energy	98
(c) Maximum work	98
(d) Some remarks on the Gibbs energy	99
(e) Maximum non-expansion work	100
(a) Gibbs energies of formation	100
(b) The Born equation	107
Checklist of concepts	103
Checklist of equations	103
TOPIC 3E Combining the First and Second Laws	104
3E.1. Properties of the internal energy	104
(a) The Maxwell relations	104
(b) The variation of internal energy with volume	106

106
106
108
108
110
110

# **FOCUS 4** Physical transformations of pure substances

•	
TOPIC 4A Phase diagrams of pure substances	120
4A.1 The stabilities of phases	120
(a) The number of phases	120
(b) Phase transitions	120
(c) Thermodynamic criteria of phase stability	121
4A.2 Phase boundaries	122
(a) Characteristic properties related to phase transitions	122
(b) The phase rule	123
4A.3 Three representative phase diagrams	125
(a) Carbon dioxide	125
(b) Water	125
(c) Helium	126
Checklist of concepts	127
Checklist of equations	127
<b>TOPIC 4B</b> Thermodynamic aspects of phase	
transitions	128
4B.1 The dependence of stability on the conditions	128
(a) The temperature dependence of phase stability	128
(b) The response of melting to applied pressure	129
(c) The vapour pressure of a liquid subjected to pressure	130
4B.2 The location of phase boundaries	131
(a) The slopes of the phase boundaries	131
(b) The solid–liquid boundary	132
(c) The liquid-vapour boundary	132
(d) The solid-vapour boundary	134
Checklist of concepts	134

Checklist of equations	134
FOCUS 5 Simple mixtures	141
<b>TOPIC 5A</b> The thermodynamic description	
of mixtures	143
5A.1 Partial molar quantities	143
(a) Partial molar volume	143
(b) Partial molar Gibbs energies	145
(c) The wider significance of the chemical potential	146
(d) The Gibbs-Duhem equation	146
5A.2 The thermodynamics of mixing	147
(a) The Gibbs energy of mixing of perfect gases	147
(b) Other thermodynamic mixing functions	149
5A.3 The chemical potentials of liquids	150
(a) Ideal solutions	150
(b) Ideal-dilute solutions	152
Checklist of concepts	153
Checklist of equations	154

<b>TOPIC 5B</b> The properties of solutions	155	FOCUS 6 Chemical equilibrium
5B.1 Liquid mixtures	155	TOPIC 61. The equilibrium constant
(a) Ideal solutions	155	
(b) Excess functions and regular solutions	156	6A.1 The Gibbs energy minimum
5B.2 Colligative properties	158	(a) The reaction Gibbs energy
(a) The common features of colligative properties	158	(b) Exergonic and endergonic reactions
(b) The elevation of boiling point	159	6A.2 The description of equilibrium
(c) The depression of freezing point	161	(a) Perfect gas equilibria
(d) Solubility	161	(b) The general case of a reaction
. (e) Osmosis	162	(c) The relation between equilibrium constants
Checklist of concepts	164	(d) Molecular Interpretation of the equilibrium constant
Checklist of equations	165	Checklist of concepts
TORICEC Diagrams of hinary systems		Checklist of equations
liquide	166	<b>TOPIC 6B</b> The response of equilibria to the
liquids	100	conditions
5C.1 Vapour pressure diagrams	166	6B.1 The response to pressure
5C.2 Temperature-composition diagrams	168	6B 2. The response to temperature
(a) The construction of the diagrams	168	(a) The van 't Hoff equation
(b) The interpretation of the diagrams	169	(b) The value of K at different temperatures
5C.3 Distillation	170	(b) The value of K at university temperatures
(a) Simple and fractional distillation	170	
(b) Azeotropes	171	Checklist of equations
(c) Immiscible liquids	172	<b>TOPIC 6C</b> Electrochemical cells
5C.4 Liquid–liquid phase diagrams	172	6C.1 Half-reactions and electrodes
(a) Phase separation	172	6C 2 Variation of cells
(b) Critical solution temperatures	173	(a) Liquid junction potentials
(c) The distillation of partially miscible liquids	175	(a) Liquid junction potentials
Checklist of concepts	176	
Checklist of equations	176	
		(a) The Nernst equation
<b>TOPIC 5D</b> Phase diagrams of binary systems: solids	1//	(b) Cells at equilibrium
5D.1 Eutectics	177	6C.4 The determination of thermodynamic functions
5D.2 Reacting systems	178	Checklist of concepts
5D.3 Incongruent melting	179	Checklist of equations
Checklist of concepts	179	TOPIC 6D Electrode potentials
TOPIC SE Phase diagrams of ternary systems	180	6D.1 Standard potentials
	100	(a) The measurement procedure
5E.1 Triangular phase diagrams	180	(b) Combining measured values
5E.2 Ternary systems	181	6D.2 Applications of standard potentials
(a) Partially miscible liquids	181	(a) The electrochemical series
(b) Ternary solids	182	(b) The determination of activity coefficients
Checklist of concepts	182	(c) The determination of equilibrium constants
TOPIC 5F Activities	183	Checklist of concepts
5E.1 The solvent activity	183	Checklist of equations
5E 2. The solute activity	183	
(a) Ideal dilute solutions	184	FOCUS 7 Quantum theory
(b) Real solutes	184	FUCUS / Quantum theory
(c) Activities in terms of mobilities	185	<b>TOPIC 7A</b> The origins of quantum mechanics
55.3. The activities of regular solutions	185	7A.1 Energy quantization
SF.5 The activities of regular solutions	105	(a) Black-body radiation
or.4 The activities of lons	18/	(b) Heat capacity
(a) mean activity coemcients	107	(c) Atomic and molecular spectra
(c) Extensions of the limiting law	10/	7A.2 Wave-particle duality
(c) extensions of the limiting law	100	(a) The particle character of electromagnetic radiation
	189	(b) The wave character of particles
Checklist of equations	190	2 · · · · · · · · · · · · · · · · · · ·

Checklist of concepts	245
Checklist of equations	245
TOPIC 7B Wavefunctions	246
7B.1 The Schrödinger equation	246
7B.2 The Born interpretation	247
(a) Normalization	248
(b) Constraints on the wavefunction	249
(c) Quantization	250
Checklist of concepts	250
Checklist of equations	250
checking of equations	
<b>TOPIC 7C</b> Operators and observables	251
7C.1 Operators	251
(a) Eigenvalue equations	251
(b) The construction of operators	252
(c) Hermitian operators	253
(d) Orthogonality	254
7C.2 Superpositions and expectation values	255
7C.3 The uncertainty principle	257
7C 4 The postulates of quantum mechanics	259
Chacklist of concents	260
	200
Checklist of equations	200
<b>TOPIC 7D</b> Translational motion	261
7D1 Free motion in one dimension	261
7D.2 Confined motion in one dimension	267
(a) The acceptable solutions	202
(a) The acceptable solutions	203
(c) The properties of the energy	265
7D.3. Confined motion in two and more dimensions	205
(a) Energy levels and wavefunctions	200
(b) Decemeracy	200
7D 4 Tunnelling	207
Charlelist of some sents	200
Checklist of concepts	2/1
Checklist of equations	272
TOPIC 7F Vibrational motion	273
751 The harmonic assillator	275
(a) The operational operation	2/3
(a) The energy levels	2/4
75.2. Droportion of the hormonic estillator	2/5
(a) Moap values	2//
(a) Mean values	2//
Charlelist of components	2/8
	279
Checklist of equations	280
TOPIC 7F Rotational motion	281
7E1 Botation in two dimensions	201
(a) The solutions of the Schrödinger equation	281
(b) Quantization of angular momentum	203
7F 2 Rotation in three dimensions	204
(a) The wavefunctions and energy lovels	285
(b) Angular momentum	285
(c) The vector model	288
	200

Checklist of concepts	290
Checklist of equations	290
FOCUS 8 Atomic structure and spectra	303
TOPIC 8A Hydrogenic atoms	304
8A.1 The structure of hydrogenic atoms	304
(a) The separation of variables	304
(b) The radial solutions	305
8A.2 Atomic orbitals and their energies	308
(a) The specification of orbitals	308
(b) The energy levels	308
(c) Ionization energies	309
(d) Shells and subshells	309
(e) s Orbitals	310
(f) Radial distribution functions	311
(g) p Orbitals	313
(h) d Orbitals	314
Checklist of concepts	314
Checklist of equations	315
TOPIC 8B Many-electron atoms	316
8B.1 The orbital approximation	316
8B.2 The Pauli exclusion principle	317
(a) Spin	317
(b) The Pauli principle	318
8B.3 The building-up principle	319
(a) Penetration and shielding	319
(b) Hund's rules	321
(c) Atomic and ionic radii	323
(d) Ionization energies and electron affinities	324
8B.4 Self-consistent field orbitals	325
Checklist of concepts	325
Checklist of equations	326
TOPIC 8C Atomic spectra	327
8C.1 The spectra of hydrogenic atoms	327
8C.2 The spectra of many-electron atoms	328
(a) Singlet and triplet terms	328
(b) Spin–orbit coupling	329
(c) Term symbols	332
(d) Hund's rules	335
(e) Selection rules	335
Checklist of concepts	336
Checklist of equations	336
FOCUS 9 Molecular structure	341
PROLUGUE The Born–Oppenheimer approximation	343
TOPIC 9A Valence-bond theory	344
9A.1 Diatomic molecules	344
9A.2 Resonance	346
9A.3 Polyatomic molecules	346
(a) Promotion	347

(b) Hybridization

Checklist of concepts	350
Checklist of equations	350
TOPIC 9B Molecular orbital theory	
the hydrogen molecule-ion	351
9B1 Linear combinations of atomic orbitals	351
(a) The construction of linear combinations	351
(b) Bonding orbitals	353
(c) Antibonding orbitals	354
9B.2 Orbital notation	356
Checklist of concepts	356
Checklist of equations	356
TODIC OC Malagular arbital theory homony close	
listemie melecular orbital theory. norhonuclear	257
diatomic molecules	557
9C.1 Electron configurations	357
(a) $\sigma$ Orbitals and $\pi$ orbitals	357
(b) The overlap integral	359
(c) Period 2 diatomic molecules	300
9C.2 Photoelectron spectroscopy	362
Checklist of concepts	363
Checklist of equations	364
TOPIC 9D Molecular orbital theory: heteronuclear	
diatomic molecules	365
9D 1 Polar bonds and electronegativity	365
9D.2. The variation principle	366
(a) The procedure	367
(b) The features of the solutions	369
Checklist of concents	370
Checklist of equations	370
TOPIC 9E Molecular orbital theory: polyatomic	
molecules	371
9E.1 The Hückel approximation	371
(a) An introduction to the method	371
(b) The matrix formulation of the method	372
9E.2 Applications	375
(a) $\pi$ -Electron binding energy	375
(b) Aromatic stability	376
9E.3 Computational chemistry	377
(a) Semi-empirical and <i>ab initio</i> methods	378
(b) Density functional theory	379
(c) Graphical representations	379
Checklist of concepts	380
Checklist of equations	380
FOCUS 10 Molecular symmetry	387
TOPIC 10A Shape and symmetry	388
10A.1. Symmetry operations and symmetry elements	388
104.2 The symmetry classification of molecules	390
(a) The groups ( C and C	392
(b) The groups $C_1, C_2$ and $C_3$	392

(e) The cubic groups	393
(f) The full rotation group	394
10A.3 Some immediate consequences of symmetry	394
(a) Polarity	394
(b) Chirality	395
Checklist of concepts	395
Checklist of operations and elements	396
TOPIC 10B Group theory	397
10B.1 The elements of group theory	397
10B.2 Matrix representations	398
(a) Representatives of operations	398
(b) The representation of a group	399
(c) Irreducible representations	400
(d) Characters	401
10B.3 Character tables	401
(a) The symmetry species of atomic orbitals	402
(b) The symmetry species of linear combinations of orbitals	403
(c) Character tables and degeneracy	404
Checklist of concepts	405
Checklist of equations	405
<b>TOPIC 10C</b> Applications of symmetry	406
10C.1 Vanishing integrals	406
(a) Integrals of the product of functions	407
(b) Decomposition of a representation	408
10C.2 Applications to molecular orbital theory	409
(a) Orbital overlap	409
(b) Symmetry-adapted linear combinations	409
10C.3 Selection rules	411
Checklist of concepts	411
Checklist of equations	411
FOCUS 11 Molecular spectroscopy	41/
<b>TOPIC 11A</b> General features of molecular	410
spectroscopy	419
11A.1 The absorption and emission of radiation	420
(a) Stimulated and spontaneous radiative processes	420
(b) Selection rules and transition moments	421
(c) The Beer–Lambert law	421
11A.2 Spectral linewidths	423
(a) Doppler broadening	423
(b) Lifetime broadening	425
(a) Source of radiation	425
(a) Sources of radiation (b) Spectral analysis	426
(c) Detectors	428
(d) Examples of spectrometers	428
Checklist of concepts	429
Checklist of equations	429

TOPIC 11B	Rotational spectroscopy	430
11B.1 Rota	tional energy levels	430
(a) Spherical	rotors	432

393

(c) The groups  $D_n$ ,  $D_{nh}$ , and  $D_{nd}$ (d) The groups  $S_n$ 

(b) Symmetric rotors	432
(c) Linear rotors	434
(d) Centrifugal distortion	434
11B.2 Microwave spectroscopy	435
(a) Selection rules	435
(b) The appearance of microwave spectra	436
11B.3 Rotational Raman spectroscopy	437
11B.4 Nuclear statistics and rotational states	439
Checklist of concepts	441
Checklist of equations	441

TOPIC 11C	Vibrational	spectroscopy o	f diatomic
molecul	es		

molecules	442
11C.1 Vibrational motion	442
11C.2 Infrared spectroscopy	443
11C.3 Anharmonicity	444
(a) The convergence of energy levels	444
(b) The Birge–Sponer plot	445
11C.4 Vibration-rotation spectra	446
(a) Spectral branches	447
(b) Combination differences	448
11C.5 Vibrational Raman spectra	448
Checklist of concepts	449
Checklist of equations	450

### $\textbf{TOPIC 11D} \hspace{0.1 cm} \textit{Vibrational spectroscopy of polyatomic}$

molecules	451
11D.1 Normal modes	451
11D.2 Infrared absorption spectra	452
11D.3 Vibrational Raman spectra	453
Checklist of concepts	454
Checklist of equations	454

### TOPIC 11E Symmetry analysis of vibrational

spectra	455
11E.1 Classification of normal modes according to symmetry	455
11E.2 Symmetry of vibrational wavefunctions	457
(a) Infrared activity of normal modes	457
(b) Raman activity of normal modes	458
(c) The symmetry basis of the exclusion rule	458
Checklist of concepts	458
TOPIC 11F Electronic spectra	459
11F.1 Diatomic molecules	459
(a) Term symbols	459
(b) Selection rules	461
(c) Vibrational fine structure	462
(d) Rotational fine structure	465
11F.2 Polyatomic molecules	466
(a) d-Metal complexes	467
(b) $\pi^* \leftarrow \pi$ and $\pi^* \leftarrow n$ transitions	468
Checklist of concepts	469
Checklist of equations	469

TOPIC 11G Decay of excited states	470
11G.1 Fluorescence and phosphorescence	470
11G.2 Dissociation and predissociation	472
11G.3 Lasers	473
Checklist of concepts	474
FOCUS 12 Magnetic resonance	487
TOPIC 12A General principles	488
12A.1 Nuclear magnetic resonance	488
(a) The energies of nuclei in magnetic fields	488
(b) The NMR spectrometer	490
12A.2 Electron paramagnetic resonance	491
(a) The energies of electrons in magnetic fields	491
(b) The EPR spectrometer	492
Checklist of concepts	493
Checklist of equations	493
TOPIC 12B Features of NMR spectra	494
12B.1 The chemical shift	494
12B.2 The origin of shielding constants	496
(a) The local contribution	496
(b) Neighbouring group contributions	497
(c) The solvent contribution	498
12B.3 The fine structure	499
(a) The appearance of the spectrum	499
(b) The magnitudes of coupling constants	501
(c) The origin of spin-spin coupling	502
(a) Equivalent nuclei	503
128 4 Exchange processes	505
12B.5 Solid state NMD	506
Charlist of concents	500
Checklist of concepts	509
	500
TOPIC 12C Puise techniques in INIVIR	509
12C.1 The magnetization vector	509
(a) The effect of the radiofrequency field	510
(b) Time- and frequency-domain signals	511
12C.2 Spin relaxation	513
(a) The mechanism of relaxation	513
13C 3. Spin descupling	515
12C.3 Spin decoupling	515
12C.4 The nuclear Overnauser effect	510
Checklist of concepts	518
Checklist of equations	518
TOPIC 12D Electron paramagnetic resonance	519
12D.1 The g-value	519
12D.2 Hyperfine structure	520
(a) The effects of nuclear spin	520
(b) The McConnell equation	521
(c) The origin of the hyperfine interaction	522

Checklist of concepts	523
Checklist of equations	523
FOCUS 13 Statistical thermodynamics	531
TOPIC 13A The Boltzmann distribution	532
13A.1 Configurations and weights	532
(a) Instantaneous configurations	532
(b) The most probable distribution	533
(c) The values of the constants	535
13A.2 The relative population of states	536
Checklist of concepts	536
Checklist of equations	537
TOPIC 13B Molecular partition functions	538
13B.1 The significance of the partition function	538
13B.2 Contributions to the partition function	540
(a) The translational contribution	540
(b) The rotational contribution	542
(c) The vibrational contribution	546
(d) The electronic contribution	547
Checklist of concepts	548
Checklist of equations	548
TOPIC 13C Molecular energies	549
13C.1 The basic equations	549
13C.2 Contributions of the fundamental modes of motion	550
(a) The translational contribution	550
(b) The rotational contribution	550
(c) The vibrational contribution	551
(d) The electronic contribution	552
(e) The spin contribution	552
Checklist of concepts	553
Checklist of equations	553
TOPIC 13D The canonical ensemble	554
13D.1 The concept of ensemble	554
(a) Dominating configurations	555
(b) Fluctuations from the most probable distribution	555
13D.2 The mean energy of a system	556
13D.3 Independent molecules revisited	556
13D.4 The variation of the energy with volume	557
Checklist of concepts	558
Checklist of equations	558
TOPIC 13E The internal energy and the entropy	559
13E.1 The internal energy	559
(a) The calculation of internal energy	55 <b>9</b>
(b) Heat capacity	560
13E.2 The entropy	561
(a) Entropy and the partition function	561
(b) The translational contribution	563
(c) The rotational contribution	563
(d) The vibrational contribution	564

.

(e) Residual entropies	565
Checklist of concepts	566
Checklist of equations	566
TOPIC 13F Derived functions	567
13F.1 The derivations	567
13F.2 Equilibrium constants	570
(a) The relation between K and the partition function	570
(b) A dissociation equilibrium	570
(c) Contributions to the equilibrium constant	571
Checklist of concepts	573
Checklist of equations	573
FOCUS 14 Molecular interactions	583
TOPIC 14A The electric properties of molecules	585
14A.1 Electric dipole moments	585
14A.2 Polarizabilities	587
14A.3 Polarization	588
(a) The frequency dependence of the polarization	588
(b) Molar polarization	590
Checklist of concepts	592
Checklist of equations	592
TOPIC 14B Interactions between molecules	593
14B.1 The interactions of dipoles	593
(a) Charge-dipole interactions	593
(b) Dipole-dipole interactions	594
(c) Dipole-induced dipole interactions	597
(d) Induced dipole-induced dipole interactions	597
14B.2 Hydrogen bonding	598
14B.3 The total interaction	599
Checklist of concepts	601
Checklist of equations	601
TOPIC 14C Liquids	602
14C.1 Molecular interactions in liquids	602
(a) The radial distribution function	602
(b) The calculation of g(r)	603
(c) The thermodynamic properties of liquids	604
14C.2 The liquid-vapour interface	605
(a) Surface tension	605
(b) Curved surfaces	606
(c) Capillary action	606
14C.3 Surface films	608
(a) Surface pressure	608
(b) The thermodynamics of surface layers	609
14C.4 Condensation	611
Checklist of concepts	612
Checklist of equations	612
TOPIC 14D Macromolecules	613
14D.1 Average molar masses	613
14D.2 The different levels of structure	614

14D.3 Random coils	615
(a) Measures of size	615
(b) Constrained chains	618
(c) Partly rigid coils	618
14D.4 Mechanical properties	619
(a) Conformational entropy	619
(b) Elastomers	620
14D.5 Thermal properties	621
Checklist of concepts	622
Checklist of equations	622
TOPIC 14E Self-assembly	623
14E.1 Colloids	623
(a) Classification and preparation	623

(a) classification and preparation	
(b) Structure and stability	624
(c) The electrical double layer	624
14E.2 Micelles and biological membranes	626
(a) The hydrophobic interaction	626
(b) Micelle formation	627
(c) Bilayers, vesicles, and membranes	628
Checklist of concepts	630
Checklist of equations	630

#### FOCUS 15 Solids

TOPIC 15A Crystal structure	641
15A.1 Periodic crystal lattices	641
15A.2 The identification of lattice planes	643
(a) The Miller indices	643
(b) The separation of neighbouring planes	644
Checklist of concepts	645
Checklist of equations	645
TOPIC 15B Diffraction techniques	646
15B.1 X-ray crystallography	646
(a) X-ray diffraction	646
(b) Bragg's law	648
(c) Scattering factors	649
(d) The electron density	649
(e) The determination of structure	652
15B.2 Neutron and electron diffraction	654
Checklist of concepts	655
Checklist of equations	655
TOPIC 15C Bonding in solids	656
15C.1 Metals	656
(a) Close packing	656
(b) Electronic structure of metals	658

(b) Electronic structure of metals	658
15C.2 Ionic solids	660
(a) Structure	660
(b) Energetics	661
15C.3 Covalent and molecular solids	663
Checklist of concepts	664
Checklist of equations	665

<b>TOPIC 15D</b> The mechanical properties of solids	666 667
Checklist of equations	668
<b>TOPIC 15E</b> The electrical properties of solids	669
15E.1 Metallic conductors	669
15E.2 Insulators and semiconductors	670
15E.3 Superconductors	672
Checklist of equations	673
TOPIC 15F The magnetic properties of solids	674
15F.1 Magnetic susceptibility	674
15F.2 Permanent and induced magnetic moments	675
15F.3 Magnetic properties of superconductors	676
Checklist of concepts	676
Checklist of equations	677
TOPIC 15G The optical properties of solids	678
15G.1 Excitons	678
15G.2 Metals and semiconductors	679
(a) Light absorption	679
(b) Light-emitting diodes and diode lasers	680
15G.3 Nonlinear optical prenomena	680
checkist of concepts	001
FOCUS 16 Molecules in motion	689
TOPIC 16A Transport properties of a	690
164.1 The phenomenological equations	690
16A.2 The transport parameters	692
(a) The diffusion coefficient	693
(b) Thermal conductivity	694
(c) Viscosity	696
(d) Effusion	697
Checklist of concepts	697
Checklist of equations	698
TOPIC 16B Motion in liquids	699
16B.1 Experimental results	699
(a) Liquid viscosity (b) Electrolyte colutions	699 700
16B 2 The mobilities of ions	700
(a) The drift speed	701
(b) Mobility and conductivity	703
(c) The Einstein relations	704
Checklist of concepts	705
Checklist of equations	705
FOCUS 16C Diffusion	706
16C.1 The thermodynamic view	706
16C.2 The diffusion equation	708
(a) Simple diffusion	708

.

(b) Diffusion with convection	710
(c) Solutions of the diffusion equation	710
16C.3 The statistical view	712
Checklist of concepts	713
Checklist of equations	714

### FOCUS 17 Chemical kinetics

TOPIC 17A The rates of chemical reactions	723
17A.1 Monitoring the progress of a reaction	723
(a) General considerations	723
(b) Special techniques	724
17A.2 The rates of reactions	725
(a) The definition of rate	725
(b) Rate laws and rate constants	726
(c) Reaction order	727
(d) The determination of the rate law	728
Checklist of concepts	/29
Checklist of equations	730
TOPIC 17B Integrated rate laws	731
17B.1 Zeroth-order reactions	731
17B.2 First-order reactions	731
17B.3 Second-order reactions	733
Checklist of concepts	736
Checklist of equations	736
<b>TOPIC 17C</b> Reactions approaching equilibrium	737
17C.1 First-order reactions approaching equilibrium	737
17C.2 Relaxation methods	738
Checklist of concepts	740
Checklist of equations	740
TOPIC 17D The Arrhenius equation	741
17D.1 The temperature dependence of reaction rates	741
17D.2 The interpretation of the Arrhenius parameters	742
(a) A first look at the energy requirements of reactions	743
(b) The effect of a catalyst on the activation energy	744
Checklist of concepts	745
Checklist of equations	745
TOPIC 17E Reaction mechanisms	746
17E.1 Elementary reactions	746
17E.2 Consecutive elementary reactions	747
17E.3 The steady-state approximation	748
17E.4 The rate-determining step	749
17E.5 Pre-equilibria	750
17E.6 Kinetic and thermodynamic control of reactions	752
Checklist of concepts	752
Checklist of equations	752
<b>TOPIC 17F</b> Examples of reaction mechanisms	753
17E.1 Unimolecular reactions	753
17F.2 Polymerization kinetics	754
	104

(a) Stepwise polymerization	755
(b) Chain polymerization	756
17F.3 Enzyme-catalysed reactions	758
Checklist of concepts	761
Checklist of equations	761
TOPIC 17G Photochomistry	760
	702
1/G.1 Photochemical processes	762
17G.2 The primary quantum yield	763
17G.3 Mechanism of decay of excited singlet states	764
17G.4 Quenching	765
17G.5 Resonance energy transfer	767
Checklist of concepts	768
Checklist of equations	768
FOCUS 18 Reaction dynamics	779
TODIC 19A Collision theory	700
	/80
18A.1 Reactive encounters	780
(a) Collision rates in gases	781
(b) The energy requirement	781
184.2. The PPK model	704
Charlist of concents	705
Checklist of concepts	786
Checklist of equations	786
<b>TOPIC 18B</b> Diffusion-controlled reactions	787
18B.1 Reactions in solution	787
(a) Classes of reaction	787
(b) Diffusion and reaction	788
18B.2 The material-balance equation	789
(a) The formulation of the equation	789
(b) Solutions of the equation	790
Checklist of concepts	790
Checklist of equations	791
TOPIC 18C Transition-state theory	792
18C.1 The Eyring equation	792
(a) The formulation of the equation	792
(b) The rate of decay of the activated complex	793
(c) The concentration of the activated complex	793
(d) The rate constant	794
18C.2 Thermodynamic aspects	795
(a) Activation parameters	795
(b) Reactions between ions	797
18C.3 The kinetic isotope effect	798
	800
Checklist of equations	800
<b>TOPIC 18D</b> The dynamics of molecular collisions	801
18D.1 Molecular beams	801
(a) Techniques	801
(b) Experimental results	802
18D.2 Reactive collisions	804
(a) Probes of reactive collisions	804

#### **XXIV** Full Contents

(b) State-to-state reaction dynamics	804
18D.3 Potential energy surfaces	805
18D.4 Some results from experiments and calculations	806
(a) The direction of attack and separation	807
(b) Attractive and repulsive surfaces	808
(c) Quantum mechanical scattering theory	808
Checklist of concepts	809
Checklist of equations	809

<b>TOPIC 18E</b> Electron transfer in homogeneous	
systems	810
18E.1 The rate law	810
18E.2 The role of electron tunnelling	811
18E.3 The rate constant	812
18E.4 Experimental tests of the theory	813
Checklist of concepts	815
Checklist of equations	815

FOCUS 19 Processes at solid surfaces
--------------------------------------

TOPIC 19A An introduction to solid surfaces	824
19A.1 Surface growth	824
19A.2 Physisorption and chemisorption	825
19A.3 Experimental techniques	826
(a) Microscopy	827
(b) Ionization techniques	828
(c) Diffraction techniques	829
(d) Determination of the extent and rates of adsorption and desorption	830
Checklist of concepts	831
Checklist of equations	831
TOPIC 19B Adsorption and desorption	832
19B.1 Adsorption isotherms	832
(a) The Langmuir isotherm	832
(b) The isosteric enthalpy of adsorption	834
(c) The BET isotherm	835

(d)	The Temkin and Freundlich isotherms	837
19	B.2 The rates of adsorption and desorption	837
(a)	The precursor state	837
(b)	Adsorption and desorption at the molecular level	838
(c)	Mobility on surfaces	839
Che	ecklist of concepts	840
Che	ecklist of equations	840
TOPI	<b>C 19C</b> Heterogeneous catalysis	841
19	C.1 Mechanisms of heterogeneous catalysis	841
(a)	Unimolecular reactions	841
(b)	The Langmuir–Hinshelwood mechanism	842
(c)	The Eley-Rideal mechanism	843
19	C.2 Catalytic activity at surfaces	843
Che	cklist of concepts	844
Che	cklist of equations	844
TOPIC	<b>C 19D</b> Processes at electrodes	845
19	D.1 The electrode-solution interface	845
19D.2 The current density at an electrode		846
(a) The Butler–Volmer equation		846
(b)	Tafel plots	850
191	D.3 Voltammetry	850
191	D.4 Electrolysis	852
191	0.5 Working galvanic cells	- 853
Che	cklist of concepts	854
Che	cklist of equations	854
Pose	urse section	
nesot		861
1	Common integrals	862
2	Units	864
3	Data	865
4	Character tables	895
Index		899