Genome Stability From Virus to Human Application

Edited by

Igor Kovalchuk Olga Kovalchuk University of Lethbridge, Lethbridge, AB, Canada

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD • PARIS SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Contents

List of Contributors	
Introduction	

1. Genome Stability: An Evolutionary Perspective

xvii xix

21

21

I. K	<i>ovalchuk</i>	
1.	Introduction	1
2.	Evolution Theories and My Reflection on	
	Them	2
3.	The Role of Symbiosis in Genome Evolution	3
	3.1 Changes in the Structure of the	
	Organellar Genome Over Time	4
	3.2 Mutation Rates in Organellar	
	Genomes and Adaptive Evolution	4
	3.3 Symbiotic Interactions Between	
	Viruses, Prokaryotes, and Eukaryotes:	
	The Role of Transposable Elements	5
4.	Fixation of a Mutant Allele in a Population	6
5.	Evolution of Mutation Rates	7
	5.1 Evolution of Somatic Mutation Rates	9
6.	Genome Instability: Is It Random?	11
	6.1 A Bias in Mutations in Different	
	Genomic Regions	12
7.	Genome Evolution May Start From	
	Changes at the Level of DNA Methylation	
	or Chromatin Modification	13
8.	Conclusion	15
	Glossary	15
	List of Abbreviations	16
	References	16

Section I Genome Instability of Viruses

2. Genetic Instability of RNA Viruses

J.N. Barr and R. Fearns

- 1. Introduction
- 2. Overview of RNA Virus Multiplication

3.	Viruses as Quasispecies	23
4.	Overview of RNA Virus Replication	
	Mechanisms	23
5.	The Viral Polymerase as a Source of Error	23
6.	Other Viral Determinants of Mutation Rate	25
7.	Recombination	25
8.	The Effect of Replication Mode	
	on Mutation Frequency	27
9.	The Effect of Cellular Factors on Virus	
	Mutation Rate	27
10.	Mechanisms Underlying Genetic	
	Robustness in RNA Viruses	28
11.	RNA Viruses on the Edge	29
12.	Virus Genetic Variability and the	
	Virus–Host "Arms Race"	30
13.	Taking Advantage of the Mutability	
	of RNA Viruses	31
14.	Conclusion	31
	Glossary	31
	List of Abbreviations	32
	References	33

3. Genome Instability in DNA Viruses

R. Sanjuán, M. Pereira-Gómez and J. Risso

1.	Overview	37
2.	Rates of Spontaneous Mutation and	
	Genetic Diversity of DNA Viruses	38
3.	Mutator Phenotypes Produced	
	by Low-Fidelity DNA Virus Polymerases	38
4.	DNA Coliphages and the MMR System	39
5.	The Interaction Between DNA Viruses	
	and the Eukaryotic DNA Damage	
	Response	40
6.	Diversity-Generating Retro-Elements	
	in Bacteriophages	41
7.	Recombination-Driven Genome	
	Instability in DNA Viruses	41
8.	APOBEC3 Proteins and DNA Virus	
	Genome Instability	42
9.	Conclusions and Future Directions	43
	Glossary	44
•	List of Acronyms and Abbreviations	44
	References	44

Section II

Genome Instability in Bacteria and Archaea

4. Genome Instability in Bacteria and Archaea: Strategies for Maintaining Genome Stability

J.-E. Messling and A.B. Williams

1.	Intro	oduction	51
2.	Rep	onses to DNA Damage	55
	2.1	The SOS Response: A Primitive	
		Cell-Cycle Checkpoint	55
	2.2	An Archaeal UV Response Based	
		on DNA Sharing	56
3.	DN/	A Repair Pathways	57
		Direct Reversal of DNA Damage	57
	3.2	Base Excision Repair and Removal	
		of Uracil from DNA	58
	3.3	Nucleotide Excision Repair:	
		A Versatile DNA-Repair Pathway	59
	3.4	Correcting Mismatched Bases:	
		Cleanup After DNA Replication	60
	3.5	Recombination Repair: Dealing With	
		Double-Strand Breaks	61
4.	Res	triction-Modification Systems:	
	Pro	tecting the Genome From Invaders	62
5.	Cor	nclusion	64
	Glo	ssary	64
	List	of Abbreviations	64
	Ref	erences	65

5. Genome Instability in Bacteria: Causes and Consequences

A.B. Williams

1.	Intro	duction	69
2.		ts of Stress Responses on Genome	
		bility	69
	2.1	The SOS Response	70
	2.2	The RpoS-Mediated General Stress	
		Response	71
	2.3	The Stringent Response	72
		Heat and Cold Shock Responses	72
	2.5	Polyphosphate-Mediated Starvation	
		Response	72
3.	Gen	ome Instability Due to Stable Mutator	
		otypes	73
4.		ome Instability Due to Homologous	
		Illegitimate Recombination	74
		Microsatellite Instability	74
		Gene Conversion	74
		Site-Specific Inversion Systems	75
	4.4		76

	5.	Genome Instability Due to Specialized	
		Genetic Elements	77
		5.1 Insertion Sequences	77
		5.2 Transposons (Nonconjugative)	78
		5.3 Miniature Inverted-Repeat	
		Transposable Elements	78
	6.	Genome Instability Due to Genetic	
		Exchange	78
		6.1 Transduction	79
		6.2 Conjugation	79
		6.3 Transformation	80
	7.	Conclusion	80
		Glossary	80
		List of Abbreviations	81
		References	81
6.	CI	RISPR: Bacteria Immune System	
	А.	Golubov	
	1.	Introduction	87
	2.	History of the CRISPR/Cas Discovery	87

. . . .

. ..

2.	HISU	bry of the CRISPR/Cas Discovery	07		
3.	Stru	cture of the CRISPR Loci	88		
1.	CRISPR/Cas Classification				
5.	Composition of the CRISPR/Cas Systems				
6.		ecular Machines of CRISPR/Cas Systems	91		
7.	CRIS	SPR/Cas Systems at Work	92		
	7.1	The CRISPR Adaptation	92		
	7.2	The Expression Stage	94		
	7.3	The CRISPR Interference	94		
8.	Oth	er Roles of the CRISPR/Cas Systems	94		
9.	Con	clusion	95		
	Glos	ssary	95		
	List of Acronyms and Abbreviations				
	Refe	erences	96		

Section III Genome Stability of Unicellular **Eukaryotes**

7. From Micronucleus to Macronucleus: **Programmed DNA Rearrangement** Processes in Ciliates Are Regulated Epigenetically by Small and Long Noncoding RNA Molecules

F. Jönsson

1.	Introduction	101
2.	The Sexual Life Circle of Ciliates	102
3.	Organization of the Micro- and	
	Macronuclear Genomes	103
4.	Epigenetic Regulation of Macronuclear	
	Development in Tetrahymena	106

5.	Epigenetic Regulation of Macronuclear			
	Development in Stichotrichous Ciliates	108		
6.	Conclusion	112		
	Glossary	112		
	List of Abbreviations	112		

112

8. Homologous Recombination and Nonhomologous End-Joining Repair in Yeast

R.E. Jones and T.C. Humphrey

References

1.	Intro	oduction	117
	1.1	A Brief History	118
2.	Hon	nologous Recombination Models	118
	2.1	Holliday Model	118
	2.2	Double-Strand Break Repair Model	118
	2.3	Synthesis-Dependent Strand	
		Annealing Model	120
	2.4	Break-Induced Replication Model	120
	2.5	Single-Strand Annealing Model	120
3.	Con	nmon Homologous Recombination	
	Step)S	121
	3.1	End Resection	121
	3.2	Nucleofilament Formation	124
	3.3	Homology Search and Strand Invasion	124
	3.4	DNA Repair Synthesis	124
	3.5	Strand Annealing	125
	3.6	Resolution and Dissolution of	
		Recombination Intermediates	125
4.	Non	homologous End-Joining	126
	4.1	Core Nonhomologous End-Joining	
		Machinery	126
	4.2	Alternative End-Joining	128
5.	Cell	Cycle Regulation of Homologous	
	Rec	ombination and Nonhomologous	
		-Joining	129
6.	Con	clusion	129
		ssary	129
	List	of Acronyms and Abbreviations	130
	Refe	erences	131

Section IV Genome Stability in Multicellular Eukaryotes

9. Meiotic and Mitotic Recombination: First in Flies

J.K. Holsclaw, T. Hatkevich and J. Sekelsky

1. Introduction1391.1 Recombination in Drosophila: The
First 100 Years139

	1.2	8	
		The Basics	140
2.	Mito	tic Recombination	140
	2.1	Mitotic Recombination: A Historical	
		Perspective	141
	2.2	Mechanisms of Mitotic	
		Recombination	141
	2.3	Initial Response and Pathway Choice	141
	2.4	Synthesis-Dependent Strand	
		Annealing: A Model Consummated	
		in Flies	143
	2.5	End Joining in Drosophila	145
	2.6	Mitotic COs and the dHJ Model	145
3.	Meio	otic Recombination	146
	3.1	Meiotic Recombination: A Historical	
		Perspective	146
	3.2	Mechanisms of Meiotic	
		Recombination	147
	3.3	Initiation of Recombination	147
	3.4	Preference of Homolog as Repair	
		Template	147
	3.5	Promoting CO Formation: Pro-CO	
		Complexes	148
	3.6	Promoting CO Formation: Meiotic	
		Resolvases	148
	3.7	Meiotic Recombination in Drosophila	:
		Double-End Engagement Model	149
4.	Dros	sophila: The Next 100 Years	150
	Glos	•	150
		of Acronyms and Abbreviations	151
		rences	152

10. Genome Stability in *Drosophila*: Mismatch Repair and Genome Stability

T. Negishi

1.	Introduction	155
2.	MMR Activity in Drosophila	155
3.	MMR Genes in Drosophila	156
4.	MMR and Microsatellite Instability	156
5.	The Role of MMR in Meiotic Recombination	157
6.	MMR and Somatic Cell Mutation	157
7.	Conclusion	159
	Glossary	160
	List of Abbreviations	160
	References	160

11. Genome Stability in Caenorhabditis elegans

M. Rieckher, A.F.C. Lopes and B. Schumacher

- 1. Introduction163
- 2. The Caenorhabditis elegans Model 164
- 3. Powerful Genetic Tools to Explore
DDR Dynamics164

Conclusion	237
Glossary	237
List of Acronyms and Abbreviations	238
Acknowledgments	238
References	238
	List of Acronyms and Abbreviations Acknowledgments

15. The Role of p53/p21/p16 in DNA-Damage Signaling and DNA Repair

Y. Kulaberoglu, R. Gundogdu and A. Hergovich

1.	Introduction		
2.	The p53 Tumor-Suppressor Protein	244	
	2.1 p53 in the DNA-Damage Response	244	
	2.2 p53 in DNA-Damage Repair	246	
	2.3 p53 in Tumor Suppression and		
	the DNA-Damage Response	246	
	2.4 p53 and Targeted DNA-Damaging		
	Cancer Therapy	247	
3.	The p21 Tumor-Suppressor Protein	248	
	3.1 p21 in the DNA-Damage Response	248	
	3.2 p21 in DNA-Damage Repair	249	
	3.3 p21 and Tumor Suppression	249	
4.	The p16 ^{INK4A} Tumor-Suppressor Protein	250	
5.	Conclusion	251	
	Glossary	252	
	List of Acronyms and Abbreviations	252	
	Acknowledgments	252	
	References	253	

16. Roles of RAD18 in DNA Replication and Postreplication Repair

C. Vaziri, S. Tateishi, E. Mutter-Rottmayer and Y. Gao

1.	Introduction: The DDR, DNA Damage-				
	Tolerance and DNA Damage-Avoidance				
	Mechanisms	257			
2.	Identification of RAD18-RAD6 as a				
	Mediator of DNA Damage Tolerance	258			
3.	RAD18-Mediated PCNA				
	Monoubiquitination and the TLS				
	Polymerase Switch	259			
4.	RAD18 Structure, Activation, and				
	Coordination With the DDR	259			
	4.1 RAD18 Structure	259			
	4.2 RAD18 Activation	260			
	4.3 Transcriptional and Posttranslational				
	Regulation of RAD18	262			
5.	DNA Replication–Independent RAD18				
	Activation and TLS	262			
6.	RAD18 Functions in Error-Free PRR via				
	Template Switching	264			
7.	TLS- and TS-Independent Roles of				
	RAD18 in Genome Maintenance	265			

8.	Physiological Roles of RAD18	266
	8.1 Developmental Roles of RAD18	266
	8.2 RAD18 Roles in Tumorigenesis	266
9.	Conclusions and Perspectives	267
	Glossary	267
	List of Abbreviations	267
	References	268

17. Base Excision Repair and Nucleotide **Excision Repair**

T. Izumi and I. Mellon

1.	Gen	eral Overview and Historical	
	Pers	pectives of Two DNA Excision-	
	Repa	air Pathways, BER and NER	275
2.		nmalian BER	276
	2.1	History and Overview of BER	276
	2.2	Types of DNA Damage Repaired	
		by BER	276
	2.3	Mechanism of Mammalian BER	277
	2.4	BER Gene Knockout in Mice and Cells	283
3.	Man	nmalian NER	283
	3.1	History and Overview of NER	283
	3.2	Types of DNA Damage Repaired	
		by NER	286
	3.3	Mechanisms of Mammalian NER	286
		Transcription-Coupled NER	289
	3.5	NER and Chromatin Structure	290
	3.6	Alterations in NER and Cancer	
		Predisposition	290
4.		ogical Implications Beyond DNA	
		nage and Repair	291
	4.1	Diversity of Immune Cells by	
		Activation-Induced Deaminase	291
	4.2	DNA Demethylation	291
5.		rplay Between NER and BER: The Key	
		e of the DNA-Damage Response for	
		ention of Cellular Degeneration	291
	5.1	Overlapping Substrate Specificity	
		Between BER and NER	291
	5.2	A Nuclear–Mitochondria Signaling	
		Network as a Main Platform of	
	_	BER/NER Interplay	292
6.		cluding Remarks	293
		ssary	293
		of Abbreviations	294
		nowledgment	295
	Refe	erences	295

18. DNA Mismatch Repair in Mammals

M. Yang and P. Hsieh

1.	Introduction and Brief History	303
2.	Post-Replication Mismatch Repair	304

Glossary	365
List of Acronyms	365
Acknowledgments	366
References	367

22. The Relationship Between Checkpoint Adaptation and Mitotic Catastrophe in Genomic Changes in Cancer Cells

L.H. Swift and R.M. Golsteyn

1.	Cancer and Its Hallmarks	373
2.	The Cell Cycle	374
3.	Cell-Cycle Checkpoints	375
4.	Genotoxic Agents as Anticancer Drugs	375
5.	Cell Death	376
6.	Mitotic Catastrophe	377
7.	Dual Modes of Cell Death by the Same	
	Genotoxic Agent	379
8.	The Relationship Between Entry Into	
	Mitosis With Damaged DNA and	
	Genomic Instability	379
	8.1 Chromothripsis	380
9.	A History of Checkpoint Adaptation	380
10.	Checkpoint Adaptation in Human Cells	383
11.	The Consequences of Checkpoint	
	Adaptation	384
12.	The Relationship Between Checkpoint	
	Adaptation and Genomic Instability	384
	Glossary	385
	List of Abbreviations	385
	Acknowledgments	386
	References	386

23. Chromatin, Nuclear Organization, and Genome Stability in Mammals

L. Boteva and N. Gilbert

1.	Introduction		
2.	Histones	392	
	2.1 Histone Variants	392	
	2.2 Histone Modifications	392	
3.	Nucleosomes and the 30-nm Fiber	394	
4.	Higher-Order Structures	395	
5.	Chromatin Remodelers		
6.	Access, Repair, Restore		
7.	Nuclear Organization of Chromatin	398	
8.	Chromosome Territories	399	
9.	Transcription and Replication in the		
	Nucleus	400	
10.	Conclusions	403	
	Glossary	403	
	List of Abbreviations	404	
	References	404	

24. Role of DNA Methylation in Genome Stability

D. Zhou and K.D. Robertson

1.	Introduction to the Cellular Functions				
	of D	NA Methylation	409		
	1.1	DNA-Methylation Dynamics	409		
	1.2	Transcriptional Regulation by			
		DNA Methylation	411		
2.	Mul	tifaceted Regulation of Genome			
	Stab	ility by DNA Methylation	411		
	2.1	Chromosomal Rearrangement and			
		Changes in Nucleic Acid Sequences	411		
	2.2	DNA-Damage Repair	413		
	2.3	DNA Methylation and			
		Heterochromatin Stability	417		
3.	Con	clusions and Future Direction	419		
	Glos	ssary	420		
	List	of Acronyms and Abbreviations	420		
	References				

25. Noncoding RNAs in Genome Integrity

I. Kovalchuk

1.	Intr	oduction	425
2.	Targeting Bacteriophage Genomes		
	by CRISPR/Cas9		
3.	DN/	A Elimination in Ciliates	426
4.	Telo	merase RNA and Telomere Length	426
5.	Role	e of Micro-RNAs in the Regulation	
	of D	NA Repair and Genome Stability	426
	5.1	A Brief Overview of Micro-RNA	
		Biogenesis	426
	5.2	Indirect Impact of miRNAs on	
		Genome Stability	426
	5.3	DNA-Repair Factors Can Affect miRN	١A
		Biogenesis in Response to Stress	428
	5.4	0 /	
		Damage Sensors and Effectors by	
		miRNAs	428
6.		Role of Piwi-Interacting RNA in the	
		ntenance of Genome Stability in the	
		mline	429
	6.1	piRNAs in <i>Drosophila</i>	430
	6.2	1	432
	6.3	piRNAs in C. <i>elegans</i>	432
	6.4	piRNAs in Transgenerational	
		Response	434
7.		Role of Small Interfering RNAs in the	!
		ntenance of Genome Stability	435
	7.1		435
	7.2	DNA Strand Break-Induced Small	
		RNAs or diRNAs Are Involved in DSI	
		Repair	436

8.	Conclusion	439
	Glossary	439
	List of Abbreviations	440
	References	440

Section VI Human Diseases Associated With Genome Instability

26. Human Diseases Associated With Genome Instability

B.C. Feltes, J. de Faria Poloni, K.N. Miyamoto and D. Bonatto

1.	Introduction		
2.	Rare	Genetic Diseases Associated	
	With	n DNA Repair	447
	2.1	NER-Related Diseases: Xeroderma	
		Pigmentosum, Trichothiodystrophy,	
		and Cockayne Syndrome	448
	2.2	Fanconi Anemia	450
	2.3	RECQ-Related Diseases: Rothmund-	
		Thomson Syndrome, Werner	
		Syndrome, and Bloom Syndrome	450
	2.4	Ataxia Telangiectasia	453
	2.5	Hutchinson–Gilford Progeria	
		Syndrome	453
	2.6	Rare Genetic Diseases: Summary	454
3.	Can	cer and Genome Instability	454
4.	Epig	enetic Regulation of Cell Cycle and	
	DN/	A Repair in Cancer	456
	Glo	ssary	459
	List	of Acronyms and Abbreviations	459
	Refe	erences	461

27. Cancer and Genomic Instability

W. Wei, Y. Cheng and B. Wang

Ξ.

1.	Intro	duction	463
2.	DNA	-Repair Pathways	463
	2.1	Base Excision-Repair Pathway	464
	2.2	Nucleotide Excision-Repair Pathway	464
	2.3	Mismatch-Repair Pathway	465
	2.4	Repair of DNA Double-Strand Breaks	468
3.	Gen	omic Instability in Hereditary Cancer	468
	3.1	Li–Fraumeni Syndrome and TP53	469
	3.2	MYH-Associated Polyposis and	
		Deficiency in Base Excision Repair	469
	3.3	Xeroderma Pigmentosum and a	
		Deficiency in Nucleotide Excision	
		Repair	470

	3.4	Hereditary Cancers Associated With Defects in DNA Mismatch Repair	471		
	3.5	Hereditary Cancers Associated With Defects of DNA Double-Strand Break			
		Repair	472		
4.	Gen	omic Instability in Sporadic			
	Can	cers	474		
	4.1	CIN in Sporadic Cancers	474		
	4.2		475		
	4.3	High-Throughput Sequencing Studies			
		on CIN in Various Cancers	475		
	4.4	Oncogenes Induce CIN	476		
	4.5	Chromothripsis	477		
	4.6	Microsatellite Instability in Sporadic			
		Cancer	477		
5.	Trig	gering Excessive Genomic Instability			
	by T	argeting DNA-Repair Pathways as a			
	Stra	tegy for Cancer Therapy	478		
6.	Con	clusion	480		
	Glos	ssary	480		
	List	of Abbreviations	480		
	Refe	erences	483		
Ch	irom	natin Modifications in DNA			

28. Chromatin Modifications in DNA Repair and Cancer

M. Renaud-Young, K. Riabowol and J. Cobb

1.	Intro	oduction	487	
2.		rrelationship of DNA and Chromatin	487	
3.	Histone Modifications and Chromatin			
	Rem	odelers	488	
	3.1	Histone Acetyltransferases and		
		Deacetylases	488	
	3.2	Histone Lysine Methyltransferases		
		and Demethylases	490	
	3.3	Histone Ubiquitination and		
		Sumoylation	491	
	3.4	Histone Phosphorylation	491	
	3.5	Ū		
		Remodelers	491	
		Histone Variants	492	
4.	Chro	omatin Modifiers in Genome Stability	492	
	4.1	DNA Replication	492	
	4.2	DNA-Damage Response and Repair	493	
5.		lication Stress, Activation of the S-Phase	•	
	Che	ckpoint and DNA-Damage Tolerance	498	
	5.1	0	498	
	5.2			
		DNA-Damage Tolerance	499	
	5.3	EF-Damage Tolerance	500	
	5.4	Translesion Synthesis–Damage		
		Tolerance	500	
	5.5	Checkpoint Signaling, Chromatin,		
		and DDT	500	

	6.	Chroma Glossar	bbreviations	502 503 503 503
29.	Ge Ca	nomic uses ar	Instability and Aging: nd Consequences	
	С. 5	idler		
	1.	Introdu	ction	511
	2.		ated Accumulation of DNA	
			e and Genomic Instability	512
			cumulation of Point Mutations,	
			ertions, and Deletions	512
			cumulation of Large Chromosomal errations	F10
	3.		of Age-Dependent Accumulation	512
	5.		mic Instability	512
			sidative Stress	512
			purination, Depyrimidination,	• •
			d Deamination	513
		3.3 Re	plication Errors and Replication	
		Str		513
			terioration of Genome-	
			intenance Mechanisms	515
			ered Nuclear Architecture	517
			ection	518
	4.		c Regions With Various	F10
			ibility to Genomic Instability Iclear DNA	518 518
			tochondrial DNA	520
	5.		Genomic Instability in Aging?	520 520
			ect of Genomic Instability on the	
			ne Expression Profile	521
			ysiological Consequences	521
	6.	Conclus		521
		Glossary		522
			bbreviations	522
		Referen	ces	523
30.	Da	mage F	Contributions to DNA- Response and Genomic ty in the Nervous System	
	М. І	letman		

1. 2.		oduction leolus as a Sensor of Neuronal DNA	527
. 2.	Dan		528
	2.1	Effects of DNA Damage on the Nucleolus	528
	2.2	Nucleolar Stress-Mediated Responses to Neuronal DNA Damage	528

	2.3	DNA Damage-Induced Nucleolar	
		Stress in Intact Brain	529
	2.4	Mediators of the Nucleolar Stress	
		Response	529
	2.5	Ribosomal Deficiency and	
		Neurodegeneration as Consequences	
		of Persistent Nucleolar Stress	530
3.	Neu	rodegeneration-Associated	
	Insta	ability of rDNA	531
	3.1	Consequences of rDNA Instability	
		in Nonneuronal Systems	531
	3.2	Mechanisms of rDNA Instability	
		in Nonneuronal Systems	532
	3.3	Evidence of rDNA Instability	
		in the Brain	533
	3.4	Potential Mechanisms and	
		Significance of Neurodegeneration-	
		Associated Instability of rDNA	534
4.	Con	cluding Remarks	535
		isary	536
	List	of Abbreviations	536
	Ackı	nowledgments	536
	Refe	erences	536

Section VII Effect of Environment on Genome Stability

31. Diet and Nutrition

L.R. Ferguson

1.	Introduction 5		
2.	Diet	ary Causes of Genomic Instability	544
	2.1	Dietary Excess (Obesity)	544
	2.2	Alcohol	544
	2.3	Red Meats	544
	2.4	Mutagens Formed During Food	
		Processing	545
	2.5	Mutagens Formed During Storage	
		of Foods	545
	2.6	Accumulation of Environmental	
		Pollutants in Animal Flesh	546
	2.7	Natural Pesticides in Food Plants	546
3.	Diet	ary Protection Against Genomic	
	Insta	bility	546
	3.1	Classic Nutrients	546
	3.2	Bioactive Food Components	548
4.	The	Significance of Genetic Polymorphisms	549
5.	Con	clusions	549
	Glos	sary	549
	List o	of Abbreviations	549
	Refe	rences	550

32. Chemical Carcinogens and Their Effect on Genome and Epigenome Stability

O. Kovalchuk

1.	Introduction	555
2.	Epigenetic Regulators	556
	2.1 DNA Methylation	556
	2.2 Histone Modifications	557
	2.3 RNA-Induced Effects	558
3.	Effects of Metals	558
4.	Tamoxifen Effects	559
5.	Effects of 1,3-Butadiene	560
6.	Influence of Polycyclic Aromatic	
	Hydrocarbons	561
7.	Conclusions	562
	Glossary	563
	List of Abbreviations	563
	References	563

33. Environmental Sources of Ionizing Radiation and Their Health Consequences

A.A. Goodarzi, A. Anikin and D.D. Pearson

1.	Introduction	569
2.	The Molecular Effects of IR in	
	Cells	569
3.	Radiation Dosage and Linear Energy	
	Transfer	571
4.	Nuclear Military Attacks and Civilian	
	Nuclear Disasters	572
5.	Aerospace Travel	573
6.	Medical Radiation (Radiotherapy and	
	Medical Imaging)	574
7.	Radon Gas	575
8.	Conclusion	577
	Glossary	577
	List of Abbreviations	577
	References	578

Section VIII Bystander and Transgenerational Effects – Epigenetic Perspective

34. Sins of Fathers Through a Scientific Lens: Transgenerational Effects

M. Merrifield and O. Kovalchuk

- 1. Introduction
- 2. Radiation-Induced Genome Instability

	2.1	Transgenerational Effects and	
		Transgenerational Genome Instability	586
	2.2	Bystander Effects	588
3.	Mec	hanisms of Transgenerational Effects:	
	Epig	enetic Changes	589
	3.1	DNA Methylation	589
	3.2	Histone Modifications	590
	3.3	Small RNA-Mediated Events	590
4.	Trar	sgenerational Effects Caused by	
	Oth	er Mutagens	592
5.	Con	clusions and Outlook	593
	Glo	ssary	594
	List	of Abbreviations	594
	Refe	erences	594

35. Genomic Instability and the Spectrum of Response to Low Radiation Doses

C. Mothersill and C. Seymour

۱.	Introduction to Low Radiation-Dose Effect		
	1.1	Background to the Controversy	601

	1.2	Epidemiology Is a Blunt Tool	601
	1.3	Targeted and Nontargeted Effects	602
	1.4	Genomic Instability	603
	1.5	Bystander Effects	603
	1.6	Adaptive/Hormetic Effects	604
	1.7	Generic Stress Responses	605
2.	Concept of Uncertainty		605
	2.1	Spectrum of Effects	605
	2.2	Spectrum of Responses	606
	2.3	Individual Variation	606
	2.4	The Role of Genetic Background	607
	2.5	The Role of Other Stressors	607
	2.6	The Role of Lifestyle Factors	607
	2.7	Species-Sensitivity Distribution	607
3.	Sear	rch for Determinators	607
	3.1	Bioindicators	608
	3.2	Biomarkers	608
	3.3	Biosensors	608
	3.4	Signals	608
	3.5	System-Level Responses	609
	3.6	Emergent Effects	609
4.	Conclusions		609
	Glossary		609
	List of Acronyms and Abbreviations		610

36. Transgenerational Genome Instability in Plants

Acknowledgments

References

I. Kovalchuk

585

586

1.	Introduction	615
2.	Genome Stability May Depend Upon the	
	Choice of the DSB DNA-Repair Pathway	616

610

3.	Epigenetic Regulation of Plant Genome		
	Stab		617
	3.1	Chromatin Structure, a Response to	
		Stress and Genome Stability	617
	3.2		
		Maintenance of Plant Genome	
		Stability and Response to Stress	619
	3.3	The Role of Histone Modifications	
		in the Maintenance of Genome	
		Stability	622
	3.4	ncRNAs Are Likely Involved in the	
		Regulation of Genome Stability and	
		DNA Repair	623
4.	Tran	sgenerational Responses	623
	4.1	Types of Transgenerational Effects	
		and Possible Mechanisms of Their	
		Appearance	623
	42	Transgenerational Changes in	020
		Response to Abiotic Stress	625
	4.3	Transgenerational Changes in Genome	025
	1.5	Stability, Methylation, and Stress	
		Tolerance in Response to Biotic	
		Stress	626
5.	Doce	ible Mechanisms Involved in the	020
э.			
		ulation of Transgenerational	627
		ritance of Stress Memory	027
	5.1	The Potential Role of DNA-Repair	6 20
		Factors	628
		The Role of Epigenetic Regulators	628
6.		cluding Remarks	629
	Glos		629
		of Abbreviations	630
	Refe	rences	630
	_		

37. Methods for the Detection of DNA Damage

D.V. Firsanov, L.V. Solovjeva, V.M. Mikhailov and M.P. Svetlova

Intre	oduction	635
The		
Mammalian Cells and Tissues		636
2.1	Phosphorylated Histone H2AX	
	as a Marker of DSBs	636
	The Man	Mammalian Cells and Tissues 2.1 Phosphorylated Histone H2AX

2.2 Imaging of DSB Repair Proteins Chromatin Sites Marked by vH2	
in Cultivated Mammalian Cells	641
γH2AX in Biodosimetry and Clinical	
Assays	643
Comet Fluorescence In Situ Hybridi	zation
(Comet-FISH) in the Detection of	
Different Types of DNA Damage	644
Methods for Studying DNA Repair	
After UV	644
Conclusions	646
Glossary	646
List of Abbreviations	646
Acknowledgments	647
References	647
	Chromatin Sites Marked by γH2 in Cultivated Mammalian Cells γH2AX in Biodosimetry and Clinical Assays Comet Fluorescence In Situ Hybridi (Comet-FISH) in the Detection of Different Types of DNA Damage Methods for Studying DNA Repair After UV Conclusions Glossary List of Abbreviations Acknowledgments

38. Conserved and Divergent Features of DNA Repair: Future Perspectives in Genome Instability Research

I. Kovalchuk

1.	An Overview and Comparison of DNA-		
	Repair Pathways in Different Organisms	651	
	1.1 Direct Reversal of DNA Damage	651	
	1.2 Base Excision Repair	653	
	1.3 Nucleotide Excision Repair	653	
	1.4 Mismatch Repair	654	
	1.5 Double-Strand Break Repair	654	
2.	Recent Advances and Future Directions		
	in DNA Repair	656	
	2.1 The Remaining Questions in MMR	656	
	2.2 The Remaining Questions in DSBs		
	Repair	658	
3.	Future Directions in Research on DNA		
	Repair, Genome Stability, and Cancer	660	
4.	Future Perspectives in DNA-Editing		
	Technologies	662	
	Glossary	663	
	List of Abbreviations	663	
	References		

6 Index