I. S. BEREZIN and N. P. ZHIDKOV COMPUTING METHODS

VOLUME I

Translated by O. M. BLUNN

Translation edited by

A. D. BOOTH

College of Engineering University of Saskatchewan

PERGAMON PRESS

OXFORD · LONDON · EDINBURGH · NEW YORK PARIS · FRANKFURT

I. S. BEREZIN and N. P. ZHIDKOV

COMPUTING METHODS

VOLUME II

Translated by O. M. BLUNN

Translation edited by A. D. BOOTH

College of Engineering University of Saskatchewan

PERGAMON PRESS

OXFORD · LONDON · EDINBURGH · NEW YORK PARIS · FRANKFURT

VOLUME ONE

Ρ	ref	ace	xix
Ŀ	ntre	oduction	xxi
§	1.	Object of Computer Mathematics	xxi
§	2.	Computer Mathematics, Its Method	xxii
		1. Functional metric spaces	xxii
		2. Functions determined in functional spaces	xxv
		3. The method of computer mathematics	XXV
§	3.	Means of Computation	xxviii
ş	4.	Computing Methods as a Branch of Computer Mathematics. Synopsis of Course	xxxii

CHAPTER 1

OPERATIONS ON APPROXIMATE QUANTITIES

ş	1.	Classification of Errors	1
		 Sources of error in the results of computation The problems arising when working with approximate 	1
		quantities	3
		3. Rules for rounding numbers	3
		4. Classification of errors	5
§	2.	The Irremovable Error	6
		1. The absolute and relative errors of a number	6
		2. Number of significant digits	8
		3. The irremovable error in the value of functions for approximate values of the argument. Errors in the results of	
		arithmetic operations 1	2
ş	3.	Errors in Rounding 1	8

§ 4. Total Error	22
§ 5. The Concept of Statistical Methods for Evaluating Errors	24
§ 6. R.m.s. Errors	30
1. Systematic and random errors	30
2. R.m.s. errors	32
3. Treatment of the results using the method of least squares.	34
4. The r.m.s. error of a function	39
5. The r.m.s. error of a uniformly distributed quantity	41
Exercises	42
References	43

THE THEORY OF INTERPOLATION AND CERTAIN APPLICATIONS

ş	1.	Statement of the Problem	44
		1. Linear sets. Linearly independent systems of elements	45
		2. The problem of interpolation	46
		3. Construction of an interpolating function	47
		4. The Chebyshev system	48
		5. Fundamental problems in the theory of interpolation	52
ş	2.	The Lagrange Interpolation Polynomial	52
		1. The construction of Lagrange interpolation polynomials	52
		2. The Lagrange interpolation polynomial for equidistant nodes	55
		3. The Aitken interpolation scheme (Neville's modification).	56
ş	3.	Errors in the Lagrange Interpolation Formula	58
		1. The residual term in the Lagrange formula and its estima-	
		tion	58
		2. Choosing the points of interpolation	61
		3. The irremovable error in the Lagrange formula	65
ş	4.	The Residual Term of the General Interpolation Formula	67
-Ş	5.	The Newton Interpolation Formula for Unequal Intervals	72
		1. Divided differences and their properties	72
•		2. Derivation of the Newton formula for unequal intervals	76
		3. The residual term in the Newton formula	78

١

ş	6. Newton Interpolation Formulae for Equal Intervals	82
	 Finite differences and their properties	82 88 93
§	7. Interpolation Formulae Using Central Differences	96
	 The interpolation formulae of Gauss, Stirling, Bessel and Everett The residual terms of interpolation formulae using central differences 	96 107
ş	8. Other Approaches to the Derivation of Interpolation Formulae for Equal Intervals	115
	 The Fraser lozenge diagram The operational method of deriving interpolation formulae. 	115 119
ş	9. The Convergence of the Interpolation Process	122
§	10. Interpolation of Periodic Functions	126
§	11. The General Problem of Interpolation by Algebraic Polynomials	138
	 The Hermite interpolation polynomial The general form of the Hermite interpolation polynomial The residual term in the Hermite interpolation formula Divided differences with recurring values of the argument The generalized Newton divided difference interpolation formula 	138 145 147 148 154
ş	12. Interpolation Functions of Many Independent Variables	156
	 The difficulties involved in interpolating functions of many variables Generalization of the Newton interpolation formulae in the case of functions of many variables Other methods of producing interpolation polynomials for 	156 161
	functions of many variables	167
ş	13. Interpolating a Function of a Complex Variable	171
§	14. The Use of Interpolation in Compiling Tables	172
ş	15. Inverse Interpolation	179
	Exercises	183
	References	194

vii

NUMERICAL DIFFERENTIATION AND INTEGRATION

§	1.	Numerical Differentiation	196
§	2.	Formulae for Numerical Differentiation	198
		 Formulae for non-equidistant nodes Formulae for equidistant nodes	198 205 210 215 215
§	3.	Numerical Integration	217
ş	4.	Newton-Coates Formulae	221
		 Derivation	221 224 230
ş	5.	Gauss Formulae for Numerical Integration	236
v		1. Construction of the formulae. The abscissae of the Gauss	
		formulae	236
		2. The residual term of the Gauss formulae	240
		3. Coefficients of the Gauss formulae	241
		5. The Markov numerical integration formulae	240 249
ş	6.	Chebyshev Numerical Integration Formulae	252
v		1. Producing the formulae	252
		2. The residual term of the Chebyshev formulae	259
§	7.	Convergence in Quadrature Processes	262
§	8.	The Euler Formula	268
		1. Bernoulli polynomials and numbers	268
		2. The Euler formula and examples	273
ş	9.	Formulae Containing Differences of the Integrand	281
		1. The Gregory formula	281
		2. The Laplace formula and other formulae	287
ş	10.	A Few Remarks About Numerical Integration Formulae	291
		1. The "Runge" method of estimating the error innumerical integration	292

.

		2. Note on the calculation of integrals with a variable upper	
		limit	294
§	11.	Improper Integrals	294
		1. The method of isolating singularities	294
		2. Special methods	299
ş	12.	Estimation of Multiple Integrals	301
		1. The method of reapplying quadrature formulae	301
		2. Substitution of an interpolation polynomial for the integ-	
		rand	306
		3. Lyusternik and Ditkin's method	310
		4. The Monte Carlo method	312
	Ez	cercises	313
	Re	oferences	317

CHAPTER 4

APPROXIMATIONS

ş	1. The Best Approximation in Linearly Normalized Spaces	320
	1. Linearly normalized space	320
	2. Best approximations	320
	3. The existence of best approximations	321
	4. The uniqueness of best approximations	323
	2. The Best Approximation of Continuous Functions by Gen	ne-
	ralized Polynomials	324
	1. The best approximation in space C	324
	2. The "Khaar" theorem	325
	3. The Chebyshev theorem	331
§	3. Algebraic Polynomials for the Best Approximation	335
	1. The Weierstrass theorem	337
	2. The theorem concerning the order of approximation w	ith
	Bernstein polynomials	340
§	4. Trigonometrical Polynomials of Best Approximation	343
ş	5. Certain Theorems Concerning the Order of the Best Appr	0X-
	imation for Continuous Functions	346
ş	6. Devising Approximate Algebraic Polynomials for the B	est
	Approximation	353

1. Preliminary remarks	354
 The first method of approximating the polynomial for the best approximation	363
approximation	368
Exercises	375
References	377

CHAPTER 5

LEAST SQUARE APPROXIMATIONS

§.	1.	Hilbert Space	379
ş	2.	Ortho-normal Sets in Hilbert Space. Fourier Series	383
§	3.	Approximations in Hilbert Space	387
•		1. Constructing the best approximation	388
ş	4.	Least Square Approximation of Functions by Algebraic Polynomials	390
		1. Orthogonal sets of polynomials	392
		2. Recurrence relations for orthogonal polynomials	394
,		3. The Christoffel-Darboux identity	396
		4. Properties of orthogonal polynomials	396
ş	5.	Certain Special Cases of Orthogonal Sets of Polynomials	399
		1. Jacobi polynomials	399
		2. Legendre polynomials	404
		4. Laguerre and Hermite polynomials	413
§	6.	The Convergence of Series of Orthogonal Sets of Polynomials	417
ş	7.	Least Square Approximations of Functions by Trigonometrical	
		Polynomials	428
§	8.	Least Square Approximations of Tabulated Functions	428
ş	9.	Least Square Approximations by Algebraic Polynomials	431
		1. Orthogonal sets of polynomials in a set of equidistant points	432
§	10.	Smoothing the Results of Observation by the Least Squares Method	440
§	11.	Empirical Formulae by the Least Squares Method. The Solution of Linear Algebraic Equations by the Least Squares Method	442

§ 12.	Least Square Approximations for Tabulated Functions by Trigonometrical Polynomials	447
§ 13.	. The Runge Method of Calculating the Coefficients a_0, a_b, b_b if	
	N = 4p	451
Exer	cises	458
Refe	rences	459
Inde	x	461

VOLUME TWO

Foreword	xiii
Preface	xv

CHAPTER 6

THE SOLUTION OF SETS OF LINEAR ALGEBRAIC EQUATIONS

§	1. Classification of Methods	1
§	2. Elimination	2
	1. The Gauss method with selection of the pivotal element (pivotal condensation)	3
	2. Compact Gauss method	6
	3. Inversion of matrices	10
	4. Calculation of determinants	11
	5. Jordan method	12
	6. The method without back-substitution	13
§.	3. The Square-root Method	16
§	4. Orthogonalization	18
§	5. Conjugate Gradients	23
§	6. Partitioning into Sub-Matrices	34
ş	7. Linear Operators. Operator "Norms"	38
	1. Finite dimensional linear normalized spaces	40
	space and their link with matrices	42
	3. The convergence of sequences of matrices and matrix	
	series	45

xii

CONTENTS

§ 8. Methods of Successive Approximation	47
§ 9. Linear First-order Full-step Methods	50
 The convergence of linear first-order full-step methods. Simple iteration	50 53 55
 § 10. Linear First-order Single-step Methods 1. The Seidel method 2. Convergence of the Seidel method 3. The relaxation method 	56 56 57 61
§ 11. The Method of Steepest Descent	62
Exercises	68
References	69

CHAPTER 7

NUMERICAL SOLUTION OF HIGH DEGREE ALGEBRAIC EQUATIONS AND TRANSCENDENTAL EQUATIONS

§	1. Introduction	71
ş	2. Isolation of Roots	71
	1. General remarks	71
	2. Bounds of the roots of algebraic equations	74
	3. The number of real roots in an algebraic equation	79
	4. Isolation of the real roots of an algebraic equation	84
	5. Isolation of the complex roots of algebraic equations	91
ş	3. The Lobachevskii Solution of Algebraic Equations (Graeffe's Root-squaring Method)	102
	1. Root-squaring. Real roots of different absolute magnitude	102
	2. The root-squaring method. Complex roots	107
	3. Root-squaring method. Close or equal roots	115
	4. The error in the Lobachevskii root-squaring method	115
	5. Lehmer's modification of the Lobachevskii root-squaring	-
	method	124

§	4.	Iterative Methods of Solving Algebraic and Transcendental Equations	129
		 Compressed transformations and their application to the proof of convergence in iteration Simple iteration: the rule of false position (secants) and the 	130
		Newton-Raphson (tangents) method	136
		3. The Chebyshev method for higher-order iteration	142
		4. König's theorem and high-order iterations	145
		6. Example	$\frac{148}{151}$
ş	5.	The Solution of Sets of Equations	153
		1. The iterative method of solving sets of a special kind 2. The Newton method	153 153
		3. The method of steepest descent	165
ş	6.	Finding the Roots of Algebraic Equations by Factorization	167
		1. Lin's method of factorization	169
		2. Friedman's method	173
		3. Hitchcock's method of isolating quadratic factors	176
Exe	erci	ses	179
Ref	ere	nces	182

THE EVALUATION OF EIGENVALUES AND EIGENVECTORS OF MATRICES

§	1.	Introduction	183
§	2.	Krylov's Method	184
		1. Eigenvalues	184
		2. Eigenvectors	193
§	3.	Lanczos' Method	194
		1. Eigenvalues	194
		2. Eigenvectors	204
§	4.	Danilevskii's Method	205
		1. Modification of the Danilevskii method	213
§	5.	Other Methods of Finding the Characteristic Polynomial	217
•		1. Leverrier's method	217

	 Bordering	219 220 221 223
ş e	3. Defining the Bounds of Eigenvalues	223
	1. The symmetric matrix2. Non-symmetric matrices	224 235
ş r	7. Iterative Methods of Finding Eigenvalues and Eigenvec- tors	239
	 The absolutely largest, real eigenvalue of a simple mat- rix. The case of a symmetric matrix Finding other eigenvalues and corresponding eigenvec- 	239
	tors for symmetric matrices	243
	 The eigenvalues and eigenvectors of simple non-symmetric matrices A few remarks on the eigenvalues and eigenvectors of 	250
	general matrices	254
ş ş	8. Acceleration of Convergence in Iterative Processes for the Solu- tion of Problems in Linear Algebra	256
	1. General Remarks	257
	2. Gavurin's method	258
	4. Aitken's δ^2 -process	$\frac{260}{262}$
	5. Improving the convergence of iterative processes for finding eigenvalues	263
ş :	9. The Irremovable Error in the Numerical Solution of Sets of Linear Algebraic Equations	264
Færer	minor mgobiato mynabions	204 980
Dat		208 071
reie	rences	211

APPROXIMATE METHODS OF SOLVING ORDINARY DIFFERENTIAL EQUATIONS

§	1. Introduction	272
ş	2. Chaplygin's Method	274
	1. Theorems of differential inequalities	274

CONTENT	S
---------	---

		 Chaplygin's method of improving approximations Another method of improving approximations Chaplygin's approximate method for linear second-order differential equations 	278 283 287
ş	3.	The Method of Small Parameters (Poincaré's theorem)	292
ş	4.	The Runge-Kutta Method	302
		tions	302 327
		3. The Runge-Kutta method for second-order equations	336
ş	5.	Difference Methods for Ordinary First-order Differential Equations	342
	,	 Certain extrapolation formulae for integrating first-order differential equations Examples of interpolation formulae The method of undetermined coefficients for the deduction 	344 348
		of difference formulae	352 355 359
Ş	6.	Difference Methods of Solving Ordinary Differential Equations of Higher Orders	362
§	7.	Estimating the Error, Convergence and Stability of the Diffe- rence Methods of Solving Ordinary Differential Equations	371
		1. Linear difference equations 2. The difference equation for the error in the approximate	371
		solution	374
		formulae	377
		4. The stability of the difference methods of solving differen- tial equations	383
		5. Estimating error and convergence in the stable difference methods of solving differential equations	387
ş	8.	The Solution of the Boundary Value Problem for Ordinary Dif- ferential Equations by the Method of Finite Differences .	390
		1. The method of finite differences. Its application to the boundary value problem for linear second-order differential equations	392

xv

2. The method of finite differences in the solution of the boun- dary value problem for non-linear second-order differential	
equations	396
§ 9. The Gel'fand-Lokutsiyevskii Method of "Chasing"	407
§ 10. The Solution of the Boundary Value Problem for Ordinary Differential Equations by Variational Methods	411
 Variational methods of solving operator equations in Hilbert space Ritz's method of solving variational problems Galerkin's method 	413 419 428
Exercises	429
References	430

CHAPTER 10

APPROXIMATE METHODS OF SOLVING PARTIAL DIFFERENTIAL AND INTEGRAL EQUATIONS

§ 2. The Mesh Method of Solving Boundary Value F	Problems in 434	
Differential Equations of the Elliptic Type .	121	-
1: The main idea	y difference	:
equations	437	
3. The approximation of boundary conditions . 4. The solvability of difference equations and y	450 methods of	
solution		
§ 3. The Mesh Method of Solving Linear Differential E the Hyperbolic Type	quations of	
 Solution of the Cauchy problem Estimating the error and convergence of the model 	472 esh method	
of solving inhomogeneous wave equations .	478	
3. The mesh method of solving mixed problems 4. Other difference methods	481 487	
§ 4. The Method of Characteristics for the Numerical Hyperbolic Sets of Partial Quasi-linear Differen- tions	Solution of itial Equa- 	

	1. Characteristic equations for a set of second-order quasi- linear differential equations	492 [.]
	2. Examples: characteristic equations for certain sets of differential equations in gas dynamics	100
	3. Characteristic equations for second-order quasi-linear hy-	498
	perbolic differential equations	504
	first-order differential equations by Masseau's method 5. The numerical solution of a hyperbolic set of three first-	507
	order differential equations by Masseau's method	515·
	bolic second-order equations	519 [,]
	7. The fundamental problems involved in the study of a planar, eddyless, supersonic and steady flow of ideal gas	524
ş	5. The Mesh Method of Solving Linear Differential Equations of the Parabolic Type	526
	1. The mesh method of solving the Cauchy problem 2. The mesh method of solving mixed problems. The stabi-	527
	lity of difference methods	534
ş	6. The Gel'fand-Lokutsiyevskii "Chasing" Method of Solving Boundary Value Problems in Partial Differential Equations	545
	1. The equation of heat conduction2. Poisson's equation	545 549
ş	7. The Convergence and Stability of Difference Methods	556
	 The difference approximation of a differential equation and the boundary conditions The "correctness" and stability of difference schemes The connexion between the convergence and "correctness" 	$\begin{array}{c} 556\\ 561 \end{array}$
	of difference schemes	567
	 4. Various methods of investigating the stability of underence schemes 5. General remarks 	572 578:
Ş	 8. Straight-line Methods of Solving Boundary Value Problems in Partial Differential Equations 1. Essential features 2. The straight-line method of solving the Dirichlet problem 	580 580
	in Poisson's equation	582
	the equation of vibration of a string	591

4. The straight-line method of solving the mixed problem in the equation of thermal conductivity	ι 598
§ 9. Variational Methods of Solving Boundary Value Problems in the Differential Equations of Mathematical Physics	۱ 607
 The Ritz method of solving operator equations and finding the eigenvalues of operators in Hilbert space	608 :
equations of the elliptic type	621
3. Other variational methods	630
4. The Ritz method of solving eigenvalue problems	634
5. Galerkin's method of solving boundary value problems	637
§ 10. Approximate Methods of Solving Integral Equations	639
1. The solution of Fredholm equations by substituting a finite	
sum for the integral	639
2. The solution of frequoin integral equations of the second	
3 Method of momenta	654
4 The method of least gauges	650
5. Trial and error	661
6. Approximate solution of Volterra equations	663
The second second of the second	
Exercises	669
References	671
Index	673

.

.

xviii