High Temperature Coatings

Second Edition

Sudhangshu Bose

Retired Fellow, Pratt & Whitney, East Hartford Connecticut, Retired Professor of Practice Rensselaer Polytechnic Institute, Department of Mechanical Engineering, Troy, New York

Contents

About the A	Autho	۲	xiii
Preface to the Second Editionxv			
Preface to t	he Fi	rst Edition	. xvii
CHAPTER	1	Introduction	1
	1.1	High-Temperature Environment	1
	Refe	rences	6
CHAPTER	2	Fundamental Concepts	7
		Thermodynamic Concepts	
		Thermodynamic Systems	
		Laws of Thermodynamics	
		Carnot Engine	
		Steady Flow Energy Equation and Bernoulli's Theorem	
		Equilibrium Constant	
		Activity Coefficient	
		Partial Pressure	
		Ionization	
		Combustion	
	2.2	Concept of Kinetics	
		Activation Energy	
		Diffusion	
	2.3	Crystal Structure	18
		Defects in Crystals	
		Crystal Structure of Nonmetallic Materials	21
	2.4	Equilibrium Phases	21
		Binary Phase Diagram	22
		Ternary Phase Diagram	
	2.5	Mechanical Behavior	
		Creep	25
		Fatigue	26
	Ref	erences	27
CHAPTER	2	Substrate Alloys	29
UNAFIEN		Temperature Capability of Metals, Alloys, Intermetallics,	
	J. I	Ceramics, and Composites	29
	32	Strengthening Mechanisms	29
	32	Titanium Alloys	31
	3.5	Steels	34
	U.T		

	3.5	Nickel–Iron Alloys	.37
	3.6	Nickel and Cobalt Base Superalloys	.37
	3.7	Ceramics, Refractory Intermetallics, and Composites	.41
	3.8	Need for Coatings	.42
	Ref	erences	.42
CHAPTER	4	Oxidation	45
		Oxidation Process	
		Temperature Effects	
		Composition Effects	
		Kinetics of Oxidation	
		Oxide Scale Protectiveness	
	4.2	Oxidation Testing and Evaluation	
		Oxidation Rates	
		Parabolic Growth	
		Linear Growth	
		Logarithmic Growth	
		Breakaway Oxidation	
	4.3	Oxidation of Alloys	
		Binary Alloy Systems	
		Ternary and Multicomponent Alloy Systems	
	4.4	Roles of Specific Alloying Constituents	
		Aluminum	
		Chromium	65
		Cobalt	65
		Silicon	65
		Boron	65
		Titanium	66
		Manganese	66
		Tantalum, Molybdenum, and Tungsten	
		Oxygen Reactive Elements	
		Rhenium/Ruthenium	
		Reduction of Sulfur Level	68
	4.5	Oxidation in the Presence of Water Vapor	.69
	4.6	Oxidation of Polycrystalline Versus Single-Crystal Alloys	.69
	4.7	Oxidation of Intermetallic yTiAl	.70
	Refe	erences	.71
CHAPTER	5	High-Temperature Corrosion	73
	5.1	Hot Corrosion Processes	73
		The Corroding Salts	76
		Acid and Base Characteristics of the Salts	78
			10

.

	5.2	Hot Corrosion of Metals and Alloys
		Solubility of Oxides in Molten Salts
		Mechanism of Sustained Hot Corrosion
		Role of Vanadium
	5.3	Role of Specific Alloying Elements in Hot Corrosion
		of Ni- and Co-Based Alloys and Coatings
		Chromium
		Nickel and Cobalt
		Silicon
		Tungsten and Molybdenum
		Vanadium
		Titanium
		Rare Earth Elements
		Platinum
	5.4	Influence of Other Contaminants
		Presence of Carbon
		Presence of Chlorides
		Hot Corrosion Effects of Biofuels
	5.5	Hot Corrosion of Thermal Barrier Coatings90
	5.6	Hot Corrosion-Like Degradation
		Stress Corrosion Cracking
		Influence of Hot Corrosion on Low Cycle Fatigue Life
	Refe	erences
CHAPTER	6	Oxidation- and Corrosion-Resistant Coatings97
	6.1	Requirements for Metallic Coatings
		Coating Constituents and Their Role
	6.2	Coating Processes
		Diffusion Coatings
		Pack Coatings
		Chemical Vapor Deposition111
		Role of Reactive Elements in Diffusion Coatings113
		Microstructure of Platinum Aluminides
		Manufacturing Aspects of the Coating Process
		Commercial Diffusion Coatings116
		Coating—Substrate Interdiffusion Effects116
		Coating Phase Stability120
		Oxidation Resistance of Diffusion Coatings122
		Corrosion Resistance of Diffusion Coatings124
		Mechanical Properties of Platinum Aluminides125
	6.4	Overlay Coatings125

	6.5	Overlay Coatings by Spray and Arc Processes127
		Beta-Gamma System Phase Stability127
		Spray Coatings129
		Low-Pressure Plasma Spray Coating Deposition Profile
		and Microstructure145
		Arc Process147
		Coating-Substrate Diffusion Effects150
		Commercial Overlay Coatings153
	6.6	Overlay Coatings by Physical Vapor Deposition153
		Sputtering154
		Ion Plating158
		Ion Implantation158
		Electron Beam Physical Vapor Deposition158
		Microstructure of Coatings159
		Mechanical Properties of Coatings and Coated Materials160
	6.7	Relative Oxidation and Corrosion Resistance of Coatings 174
		Oxidation Resistance
		Corrosion Resistance
	6.8	Modeling of Oxidation and Corrosion Life
		Oxidation Life of Superalloys and Metallic Coatings177
		Hot Corrosion Life of Superalloys and Coatings
		Interaction of Erosion-Oxidation and Erosion-Corrosion190
	Ref	erences
CHAPTER	7	Thermal Barrier Coatings (TBCs)199
	7.1	Temperature Reduction by Thermal Barrier Coatings
		Magnitude of Temperature Reduction201
		The Benefits of Thermal Barrier Coating202
	7.2	Materials Requirement for Thermal Barrier Coatings203
	7.3	Partially Stabilized Zirconia204
	7.4	Plasma-Sprayed Thermal Barrier Coatings207
		The Plasma Spray Process207
		Online Process Monitoring
		Microstructure of Plasma-Sprayed Thermal Barrier Coating211
		Microstructure Development and Structure-Property
		Relationship212
		Residual Stresses
		Role of Thermally Grown Oxide
		Structural Properties
		Plasma Thermal Barrier Coating Durability
		Non-line-of-sight Coating Deposition: Sol-Gel Process236

	7.5	Electron Beam Physical Vapor Deposited Thermal Barrier	
		Coatings	237
		Why Electron Beam	237
		Processing	237
		Microstructure Formation	242
		Thermally Grown Oxide	
		EB-PVD Thermal Barrier Coating Degradation Modes	
		and Locations	250
		Role of Residual Stress	
		Roles of Oxygen Reactive Elements	
		Bond Strength	
		Structural Properties	
		Oxidation and Thermocyclic Behavior	
		Failure Mechanisms and Life Modeling	
		Thermal Properties of Thermal Barrier Coating	
	7.6	Environmental Barrier Coatings	
		erences	
CHAPTER	8	Nondestructive Inspection (NDI) of Coatings	201
		Nondestructive Inspection (hbl) of coatings	
	0.1		
		Fluorescent Penetrant Inspection	
		Ultrasonic Inspection	
		Eddy Current	
		Infrared Imaging	
		Acoustic Emission	
		Photoacoustic Technique	
		Midinfrared Reflectance	
		Electrochemical Impedance Spectroscopy	
		Photoluminescence Piezospectroscopy	
	D (Interferometric Techniques	
	Refe	erences	
CHAPTER	9	Coatings Repair	.319
	9.1	Limits to Coatings Repair	319
	9.2	The Repair Process	320
		Removal of Ceramic Coatings	322
		Removal of Metallic Coatings	323
	9.3	Recoating and Material Restoration	323
		Microplasma Sprayed Ceramic Coating Restoration	323
		Sol-Gel Process for Ceramic Coating Restoration	
		Coupon Repair	323
	Refe	rences	

CHAPTER	10	Field and Simulated Field Experience	327
		Gas Turbine Engine Application	
		Metallic Coatings	
		Thermal Barrier Coating	
	10.2	Other Applications	
		Coal Gasification Combined Cycle Power Plant	
		Fast Breeder Reactors	
		Waste to Energy Plants	
		Diesel Engines	
	10.3	New Field Observations on Gas Turbine Engine	
		Hot Section Parts	
		Internal Hot Corrosion	351
		Underplatform Pitting Hot Corrosion	
		CMAS Attack of TBC-Coated Turbine Blade and	
		Blade Outer Air Seal	
	Refer	ences	

Appendix	
Author Index	
Subject Index	