Manfred M. Fischer • Arthur Getis Editors

Handbook of Applied Spatial Analysis

Software Tools, Methods and Applications

Contents

Preface

Intro <i>Manfi</i>	ntroduction Manfred M. Fischer and Arthur Getis		
PAR	TA C	GI Software Tools	
A .1	Spatial <i>Lauren</i>	l Statistics in ArcGIS M. Scott and Mark V. Janikas	
	A.1.1	Introduction	27
	A.1.2	Measuring geographic distributions	28
	A.1.3	Analyzing patterns	30
	A.1.4	Mapping clusters	33
	A.1.5	Modeling spatial relationships	35
	A.1.6	Custom tool development	38
	A.1.7	Concluding remarks	39
	Refere	nces	40
A.2	Spatial <i>Melissc</i>	l Statistics in SÅS a J. Rura and Daniel A. Griffith	
	A.2.1	Introduction	43
	A.2.2	Spatial statistics and SAS	43
	A.2.3	SAS spatial analysis built-ins	44
	A.2.4	SAS implementation examples	45
	A.2.5	Concluding remarks	51
	Referen	nces	51
A.3	Spatial <i>Roger S</i>	l Econometric Functions in R S. <i>Bivand</i>	
	A.3.1	Introduction	53
	A.3.2	Spatial models and spatial statistics	55
	A.3.3	Classes and methods in modelling using R	57
	A.3.4	Issues in prediction in spatial econometrics	60
	A.3.5	Boston housing values case	65
	A.3.6	Concluding remarks	68
	Referen	nces	69

v

A.4	GeoD Luc Ar	a: An Introduction to Spatial Data Analysis uselin, Ibnu Syabri and Youngihn Kho	
	A.4.1	Introduction	73
	A.4.2	Design and functionality	76
	A.4.3	Mapping and geovisualization	78
	A.4.4	Multivariate EDA	80
	A.4.5	Spatial autocorrelation analysis	82
	A.4.6	Spatial regression	84
	A.4.7	Future directions	86
	Refere	nces	87
A.5	STAR Sergio	S: Space-Time Analysis of Regional Systems J. Rey and Mark V. Janikas	
	A.5.1	Introduction	91
	A.5.2	Motivation	92
	A.5.3	Components and design	92
	A.5.4	Illustrations	9 8
	A.5.5	Concluding remarks	109
	Refere	nces	111
A.6	Space- Compl <i>Geoffre</i>	Time Intelligence System Software for the Analysis of ex Systems by M. Jacquez	
	A.6.1	Introduction	. 113
	A.6.2	An approach to the analysis of complex systems	115
	A.6.3	Visualization	116
	A.6.4	Exploratory space-time analysis	117
	A.6.5	Analysis and modeling	119
	A.6.6	Concluding remarks	122
	Referen	nces	123
A.7	Geosta Pierre (tistical Software Goovaerts	
	A.7.1	Introduction	125
	A.7.2	Open source code versus black-box software	127
	A.7.3	Main functionalities	128
	A.7.4	Affordability and user-friendliness	131
	A.7.5	Concluding remarks	132
	Referen	nces	133
A.8	GeoSu for Mo <i>Gyoung</i>	rveillance: GIS-based Exploratory Spatial Analysis Tools nitoring Spatial Patterns and Clusters ju Lee, Ikuho Yamada and Peter Rogerson	
	A.8.1	Introduction	125
	A.8.2	Structure of GeoSurveillance	135
			/

5

	A.8.3 A.8.4	Methodological overview Illustration of GeoSurveillance	138 142
	A.8.5	Concluding remarks	148
	Referen	ces	149
A.9	Web-ba <i>Luc Ans</i>	ised Analytical Tools for the Exploration of Spatial Data elin, Yong Wook Kim and Ibnu Syabri	
	A.9.1	Introduction	151
	A.9.2	Methods	152
	A.9.3	Architecture	158
	A.9.4	Illustrations	163
	A.9.5	Concluding remarks	170
	Referen	ces	171
A.10	PySAL Sergio J	: A Python Library of Spatial Analytical Methods <i>Rey and Luc Anselin</i>	
	A.10.1	Introduction	175
	A.10.2	Design and components	177
	A.10.3	Empirical illustrations	180
	A.10.4	Concluding remarks	191
	Referen	ces	191
PAR ⁻	гв s		
		patial Statistics and Geostatistics	
B. 1	The Na <i>Robert I</i>	patial Statistics and Geostatistics ture of Georeferenced Data P. Haining	
B. 1	The Na <i>Robert I</i> B.1.1	patial Statistics and Geostatistics ture of Georeferenced Data P. <i>Haining</i> Introduction	197
B.1	The Na <i>Robert I</i> B.1.1 B.1.2	patial Statistics and Geostatistics ture of Georeferenced Data P. <i>Haining</i> Introduction From geographical reality to the spatial data matrix	197 199
B.1	The Na <i>Robert I</i> B.1.1 B.1.2 B.1.3	patial Statistics and Geostatistics ture of Georeferenced Data P. <i>Haining</i> Introduction From geographical reality to the spatial data matrix Properties of spatial data in the spatial data matrix	197 199 204
B.1	The Na <i>Robert I</i> B.1.1 B.1.2 B.1.3 B.1.4	patial Statistics and Geostatistics ture of Georeferenced Data P. Haining Introduction From geographical reality to the spatial data matrix Properties of spatial data in the spatial data matrix Implications of spatial data properties for data analysis	197 199 204 208
B.1	The Na <i>Robert I</i> B.1.1 B.1.2 B.1.3 B.1.4 B.1.5	patial Statistics and Geostatistics ture of Georeferenced Data P. Haining Introduction From geographical reality to the spatial data matrix Properties of spatial data in the spatial data matrix Implications of spatial data properties for data analysis Concluding remarks	197 199 204 208 214
B.1	The Na <i>Robert I</i> B.1.1 B.1.2 B.1.3 B.1.4 B.1.5 Referen	patial Statistics and Geostatistics ture of Georeferenced Data P. Haining Introduction From geographical reality to the spatial data matrix Properties of spatial data in the spatial data matrix Implications of spatial data properties for data analysis Concluding remarks ces	197 199 204 208 214 214
B.1 B.2	The Na Robert I B.1.1 B.1.2 B.1.3 B.1.4 B.1.5 Referen Explora Roger S.	patial Statistics and Geostatistics ture of Georeferenced Data P. Haining Introduction From geographical reality to the spatial data matrix Properties of spatial data in the spatial data matrix Implications of spatial data properties for data analysis Concluding remarks ces atory Spatial Data Analysis <i>Bivand</i>	197 199 204 208 214 214
B.1 B.2	The Na Robert F B.1.1 B.1.2 B.1.3 B.1.4 B.1.5 Referen Explora Roger S. B.2.1	patial Statistics and Geostatistics ture of Georeferenced Data P. Haining Introduction From geographical reality to the spatial data matrix Properties of spatial data in the spatial data matrix Implications of spatial data properties for data analysis Concluding remarks ces tory Spatial Data Analysis <i>Bivand</i> Introduction	197 199 204 208 214 214 214
B.1 B.2	The Na <i>Robert I</i> B.1.1 B.1.2 B.1.3 B.1.4 B.1.5 Referen Explora <i>Roger S.</i> B.2.1 B.2.2	patial Statistics and Geostatistics ture of Georeferenced Data P. Haining Introduction From geographical reality to the spatial data matrix Properties of spatial data in the spatial data matrix Implications of spatial data properties for data analysis Concluding remarks ces tory Spatial Data Analysis <i>Bivand</i> Introduction Plotting and exploratory data analysis	197 199 204 208 214 214 214 219 220
B.1 B.2	The Na <i>Robert I</i> B.1.1 B.1.2 B.1.3 B.1.4 B.1.5 Referen Explora <i>Roger S.</i> B.2.1 B.2.2 B.2.3	patial Statistics and Geostatistics ture of Georeferenced Data P. Haining Introduction From geographical reality to the spatial data matrix Properties of spatial data in the spatial data matrix Implications of spatial data properties for data analysis Concluding remarks ces tory Spatial Data Analysis <i>Bivand</i> Introduction Plotting and exploratory data analysis Geovisualization	197 199 204 208 214 214 214 219 220 224
B.1 B.2	The Na <i>Robert I</i> B.1.1 B.1.2 B.1.3 B.1.4 B.1.5 Referen Explora <i>Roger S.</i> B.2.1 B.2.2 B.2.3 B.2.4	patial Statistics and Geostatistics ture of Georeferenced Data P. Haining Introduction From geographical reality to the spatial data matrix Properties of spatial data in the spatial data matrix Implications of spatial data properties for data analysis Concluding remarks ces tory Spatial Data Analysis <i>Bivand</i> Introduction Plotting and exploratory data analysis Geovisualization Exploring point patterns and geostatistics	197 199 204 208 214 214 214 219 220 224 229
B.1 B.2	The Na <i>Robert I</i> B.1.1 B.1.2 B.1.3 B.1.4 B.1.5 Referen Explora <i>Roger S</i> B.2.1 B.2.2 B.2.3 B.2.4 B.2.5	patial Statistics and Geostatistics ture of Georeferenced Data P. Haining Introduction From geographical reality to the spatial data matrix Properties of spatial data in the spatial data matrix Implications of spatial data properties for data analysis Concluding remarks ces tory Spatial Data Analysis <i>Bivand</i> Introduction Plotting and exploratory data analysis Geovisualization Exploring point patterns and geostatistics Exploring areal data	197 199 204 208 214 214 214 219 220 224 229 236
B.1 B.2	The Na <i>Robert I</i> B.1.1 B.1.2 B.1.3 B.1.4 B.1.5 Referen Explora <i>Roger S.</i> B.2.1 B.2.2 B.2.3 B.2.4 B.2.5 B.2.6	patial Statistics and Geostatistics ture of Georeferenced Data P. Haining Introduction From geographical reality to the spatial data matrix Properties of spatial data in the spatial data matrix Implications of spatial data properties for data analysis Concluding remarks ces atory Spatial Data Analysis <i>Bivand</i> Introduction Plotting and exploratory data analysis Geovisualization Exploring point patterns and geostatistics Exploring areal data Concluding remarks	197 199 204 208 214 214 214 219 220 224 229 236 249

B.3	Spatial Arthur	Autocorrelation Getis	
	B.3.1	Introduction	255
	B.3.2	Attributes and uses of the concept of spatial autocorrelation	257
	B.3.3	Representation of spatial autocorrelation	259
	B.3.4	Spatial autocorrelation measures and tests	262
	B.3.5	Problems in dealing with spatial autocorrelation	272
	B.3.6	Spatial autocorrelation software	274
	Referen	nces	275
B.4	Spatial <i>Jared A</i>	Clustering Idstadt	
	B.4.1	Introduction	279
	B.4.2	Global measures of spatial clustering	280
	B.4.3	Local measures of spatial clustering	289
	B.4.4	Concluding remarks	297
	Referen	nces	298
B.5	Spatial <i>Daniel</i> .	Filtering A. Griffith	
	B.5.1	Introduction	301
	B.5.2	Types of spatial filtering	303
	B.5.3	Eigenfunction spatial filtering and generalized linear	210
	B.5.4	Eigenfunction spatial filtering and geographically	312
		weighted regression	313
	B.5.5	Eigenfunction spatial filtering and geographical	
		interpolation	315
	B.5.6	Eigenfunction spatial filtering and spatial interaction	
		data	316
	B.5.7	Concluding remarks	317
	Referer	nces	317
B.6	The Va Margar	ariogram and Kriging et A. Oliver	
	B.6.1	Introduction	319
	B.6.2	The theory of geostatistics	319
	B.6.3	Estimating the variogram	321
	B.6.4	Modeling the variogram	327
	B.6.5	Case study: The variogram	331
	B.6.6	Geostatistical prediction: Kriging	337
	B.6.7	Case study: Kriging	344
	Referer	nces	350

Part C Spatial Econometrics

C.1	Spatial Econometric Models James P. LeSage and R. Kelley Pace			
	C.1.1	Introduction	355	
	C.1.2	Estimation of spatial lag models	360	
	C.1.3	Estimates of parameter dispersion and inference	365	
	C.1.4	Interpreting parameter estimates	366	
	C.1.5	Concluding remarks	374	
	Referen	1005	374	
C.2	Spatial <i>J. Paul</i>	Panel Data Models Elhorst		
	C.2.1	Introduction	377	
	C.2.2	Standard models for spatial panels	378	
	C.2.3	Estimation of panel data models	382	
	C.2.4	Estimation of spatial panel data models	389	
	C.2.5	Model comparison and prediction	399	
	C.2.6	Concluding remarks	403	
	Referen	nces	405	
C.3	Spatial <i>James F</i>	Econometric Methods for Modeling Origin-Destination Flows P. LeSage and Manfred M. Fischer		
	C.3.1	Introduction	409	
	C.3.2	The analytical framework	410	
	C.3.3	Problems that plague empirical use of conventional		
		spatial interaction models	416	
	C.3.4	Concluding remarks	431	
	Referer	nces	432	
C.4	Spatial <i>Olivier</i> .	Econometric Model Averaging Parent and James P. LeSage		
	C.4.1	Introduction	435	
	C.4.2	The theory of model averaging	436	
	C.4.3	The theory applied to spatial regression models	440	
	C.4.4	Model averaging for spatial regression models	444	
	C.4.5	Applied illustrations	450	
	C.4.6	Concluding remarks	458	
	Referen	nces	459	
C.5	Geogra David C	phically Weighted Regression <i>C. Wheeler and Antonio Páez</i>		
	C.5.1	Introduction	461	
	C.5.2	Estimation	462	
	C.5.3	Issues	467	

	C.5.4	Diagnostic tools	469
	C.5.5	Extensions	472
	C.5.6	Bayesian hierarchical models as an alternative to GWR	474
	C.5.7	Bladder cancer mortality example	477
	Refere	nces	484
C.6	Expan <i>Emilio</i>	sion Method, Dependency, and Multimodeling Casetti	
	C.6.1	Introduction	487
	C.6.2	Expansion method	488
	C.6.3	Dependency	493
	C.6.4	Multimodeling	496
	C.6.5	Concluding remarks	501
	Refere	nces	502
C.7	Multile S.V. Su	evel Modeling bramanian	
	C.7.1	Introduction	507
	C.7.2	Multilevel framework: A necessity for understanding	
		ecological effects	509
	C.7.3	A typology of multilevel data structures	510
	C.7.4	The distinction between levels and variables	511
	C.7.5	Multilevel analysis	512
	C.7.6	Multilevel statistical models	513
	C.7.7	Exploiting the flexibility of multilevel models to	
		incorporating 'realistic' complexity	521
	C.7.8	Concluding remarks	523
	Referen	nces	524

Part D The Analysis of Remotely Sensed Data

D.1	ARTM Multis Suchar	ARTMAP Neural Network Multisensor Fusion Model for Multiscale Land Cover Characterization Sucharita Gopal, Curtis E. Woodcock and Weiguo Liu		
	D.1.1	Background: Multiscale characterization of land cover	529	
	D.1.2	Approaches for multiscale land cover characterization	530	
	D.1.3	Research methodology and data	532	
	D.1.4	Results and analysis	534	
	D.1.5	Concluding remarks	540	
	Referen	nces	541	
D.2	Model Selection in Markov Random Fields for High Spatial Resolution Hyperspectral Data <i>Francesco Lagona</i>			
	D.2.1	Introduction	545	

	D.2.2	Restoration, segmentation and classification of HSRH	
		images	549
	D.2.3	Adjacency selection in Markov random fields	550
	D.2.4	A study of adjacency selection from hyperspectral data	554
	D.2.5	Concluding remarks	560
	Referen	ices	561
D.3	Geogra Douglas	phic Object-based Image Change Analysis <i>Stow</i>	
	D.3.1	Introduction	565
	D.3.2	Purpose of GEOBICA	566
	D.3.3	Imagery and pre-processing requirements	568
	D.3.4	GEOBIA principles	569
	D.3.5	GEOBICA approaches	571
	D.3.6	GEOBICA strategies	572
	D.3.7	Post-processing	575
	D.3.8	Accuracy assessment	576
	D.3.9	Concluding remarks	578
	Referen	ices	579

Part E Applications in Economic Sciences

E.1	The In	The Impact of Human Capital on Regional Labor Productivity in		
	Europe	8		
	Manfre	ed M. Fischer, Monika Bartkowska, Aleksandra Riedl,		
	Sascha	Sardadvar and Andrea Kunnert		
	E.1.1	Introduction	585	
	E.1.2	Framework and methodology	586	
	E.1.3	Application of the methodology	592	
	E.1.4	Concluding remarks	595	
	Refere	nces	596	

E.2 Income Distribution Dynamics and Cross-Region Convergence in Europe Manfred M. Fischer and Peter Stumpner

599
601
608
622
623
626

E.3	A Mul	A Multi-Equation Spatial Econometric Model, with Application to		
	EU Ma	anufacturing Productivity Growth		
	Bernar	d Fingleton		
	E.3.1	Introduction	629	
	E.3.2	Theory	630	
	E.3.3	Incorporating technical progress variations	632	
	E.3.4	The econometric model	637	
	E.3.5	Model restriction	639	
	E.3.6	The final model	642	
	E.3.7	Concluding remarks	644	
	References		645	
	Appen	dix	647	
	• •			

Part F Applications in Environmental Sciences

F.1	A Fuzzy k-Means Classification and a Bayesian Approach for Spatial Prediction of Landslide Hazard Pece V. Gorsevski, Paul E. Gessler and Piotr Jankowski		
	F.1.1	Introduction	653
	F.1.2	Overview of current prediction methods	655
	F.1.3	Modeling theory	658
	F.1.4	Application of the modeling approach	666
	F.1.5	Concluding remarks	679
	Referen	ces	680
F.2	Incorporating Spatial Autocorrelation in Species Distribution Models Jennifer A. Miller and Janet Franklin		
	F.2.1	Introduction	685
	F.2.2	Data and methods	687
	F.2.3	Results	691
	F.2.4	Concluding remarks	697
	Referen	ces	699
F.3	A Web Enviror <i>Ramana</i>	-based Environmental Decision Support System for mental Planning and Watershed Management than Sugumaran, James C. Meyer and Jim Davis	
	F.3.1	Introduction	703
	F.3.2	Study area	704
	F.3.3	Design and implementation of WEDSS	705
	F .3.4	The WEDSS in action	712
	F.3.5	Concluding remarks	715
	Referen	ces	716

Part G Applications in Health Sciences

G.1	Spatio- 1993-2 <i>Sharon</i> <i>Mark L</i> .	Spatio-Temporal Patterns of Viral Meningitis in Michigan, 1993-2001 Sharon K. Greene, Mark A. Schmidt, Mary Grace Stobierski and Mark L. Wilson		
	G.1.1	Introduction	721	
	G.1.2	Materials and methods	723	
	G.1.3	Results	725	
	G.1.4	Concluding remarks	730	
	Referer	ices	734	
G.2	Space-' Dunrie : Robert (Time Visualization and Analysis in the Cancer Atlas Viewer A. Greiling, Geoffrey M. Jacquez, Andrew M. Kaufmann and G. Rommel		
	G.2.1	Introduction	737	
	G.2.2	Data and methods	739	
	G.2.3	Results	742	
	G.2.4	Concluding remarks	750	
	Referer	nces	751	
G.3	Exposure Assessment in Environmental Epidemiology Jaymie R. Meliker, Melissa J. Slotnick, Gillian A. AvRuskin, Andrew M. Kaufmann, Geoffrey M. Jacquez and Jerome O. Nriagu			
	G.3.1	Introduction	753	
	G.3.2	Data and methods	755	
	G.3.3	Features and architecture of Time-GIS	757	
	G.3.4	Application	759	
	G.3.5	Concluding remarks	765	
	Referen	nces	766	
List c	of Figure:	5	769	
List c	of Tables		779	
Subje	ect Index		785	
Autho	or Index		793	
Cont	ributing 1	Authors	805	

List of Figures

PART A GI Software Tools

A.1 Spatial Statistics in ArcGIS

Fig. A.1.1	Right click on a script tool and select <i>Edit</i> to see the Python source code	28
Fig. A.1.2	Weighted mean center of population, by county, 1910 through 2000	29
Fig. A.1.3	Core areas for five gangs based on graffiti tagging	30
Fig. A.1.4	Relative per capita income for New York, 1969 to 2002	32
Fig. A.1.5	Components of the K function graphical output	32
Fig. A.1.6	An analysis of poverty in Ecuador using local Moran's I	34
Fig. A.1.7	An analysis of vandalism hot spots in Lincoln, Nebraska using G_i^*	34
Fig. A.1.8	Traffic conditions or a barrier in the physical landscape can dramatically change actual travel distances, impacting results of spatial analysis	35
Fig. A.1.9	GWR optionally creates a coefficient surface for each model explanatory variable reflecting variation in modeled relationship	36
Fig. A.1.10	Default output from the regression tools is a map of model over- and underpredictions \hat{f}	38
Fig. A.1.11	Geoprocessing Resource Center Web page	39

A.2 Spatial Statistics in SAS

Fig. A.2.1	Moran's I workflow implemented in SAS	46
Fig. A.2.2	Visual Basic interface inside ArcGIS, the Load Data and Model Tabs	47
Fig. A.2.3	Eigenvector spatial filtering work flow implemented in SAS	49

A.3 Spatial Econometric Functions in R

Fig. A.3.1	Boston tract log median house price data: plots of spatial autoregressive error model fit components and residuals for all 506 tracts	65
Fig. A.3.2	Comparison of model prediction root mean square errors for four models divided north/south, Boston house price data	66
Fig. A.3.3	Comparison of model prediction root mean square errors means and standard deviations for 100 random samples of 250 in-sample tracts and 256 out-of-sample tracts, for five models, Boston house price data	67

A.4 GeoDa: An Introduction to Spatial Data Analysis

Fig. A.4.1	The opening screen with menu items and toolbar buttons	78
Fig. A.4.2	Linked box maps, box plot and cartogram, raw and smoothed prostate cancer mortality rates	79
Fig. A.4.3	Multivariate exploratory data analysis with linking and brushing	81
Fig. A.4.4	LISA cluster maps and significance maps	83
Fig. A.4.5	Maximum Likelihood estimation of the spatial error model	85

A.5 STARS: Space-Time Analysis of Regional Systems

Fig. A.5.1	STARS in GUI mode	95
Fig. A.5.2	STARS in command line interface mode	96
Fig. A.5.3	STARS in CLI+GUI mode	97
Fig. A.5.4	Multiple views of U.S. per capita income data	98
Fig. A.5.5	Linking multiple views	99
Fig. A.5.6	Brushing multiple views	100
Fig. A.5.7	Roaming a map with brushing	101
Fig. A.5.8	Spatial traveling with brushing	102
Fig. A.5.9	Time roaming	103
Fig. A.5.10	Space-time instabilities	104
Fig. A.5.11	Scatter plot generated time path	105
Fig. A.5.12	Map generated time series	106
Fig. A.5.13	Distributional mixing	107
Fig. A.5.14	Spatial and temporal covariance networks	108
Fig. A.5.15	Spider graph of temporal networks	109

A.6 Space-Time Intelligence System Software for the Analysis of Complex Systems

Fig. A.6.1	Visualization and exploration of space-time patterns in daily beer sales at Dominick's stores in the greater Chicago area in 1990	117
Fig. A.6.2	STIS visualizes spatial weights by outlining the selected location (centroid or polygon), and the localities to which it is connected	118
Fig. A.6.3	Automatic variogram model fitting of soil Cadmium concentrations in the Jura mountains, France	119
Fig. A.6.4	A-spatial regression analysis of breast cancer in the northeastern United States. A local Moran analysis found significant clusters of high and low residuals (map top center) and a global Moran's I of 0.18 ($p < 0.001$)	121

A.8 GeoSurveillance: GIS-based Exploratory Spatial Analysis Tools for Monitoring Spatial Patterns and Clusters

Fig. A.8.1	Structure of GeoSurveillance	137
Fig. A.8.2	Statistical analysis procedures in GeoSurveillance	138

Fig. A.8.3	Result tables linked to the map in Fig. A.8.4	143
Fig. A.8.4	Map of the local score statistic for North Carolina SIDS data	144
Fig. A.8.5	Results for the local score (upper) and M (lower) statistics	145
Fig. A.8.6	Maps of adjusted local score statistic for different bandwidths	146
Fig. A.8.7	Linked windows of cusum map, tables and charts	146
Fig. A.8.8	Enlarged image (tables and parameter control panels)	147
Fig. A.8.9	Maximum cusum charts and 1998 map when $\sigma = 0$	147
Fig. A.8.10	Maximum cusum charts and 1998 maps when $\sigma = 1.5$	148

A.9 Web-based Analytical Tools for the Exploration of Spatial Data

Fig. A.9.1	Basic Geotools architecture (original)	159
Fig. A.9.2	Geotools interface	159
Fig. A.9.3	Extended Geotools architecture	160
Fig. A.9.4	Customized interface	161
Fig. A.9.5	Welcome screen and general options	163
Fig. A.9.6	Excess Rate map, St. Louis region homicides (1979-84)	164
Fig. A.9.7	Empirical Bayes smoothing, colon cancer, Appalachia (1994-98). Two box maps with smoothed map on top and original raw rate on bottom	165
Fig. A.9.8	Empirical Bayes subset smoothing, colon cancer, Appalachia (1994-98). Two box maps with smoothed map on top and original raw rate on bottom	166
Fig. A.9.9	Spatial smoothing, colon cancer, Appalachia (1994-98)	167
Fig. A.9.10	Moran scatterplot, St. Louis region homicide rate (1979-84)	168
Fig. A.9.11	Moran scatterplot, East subregion homicide rate (1979-84)	169

A.10 PySAL: A Python Library of Spatial Analytical Methods

Fig. A.10.1	PySAL components	178
Fig. A.10.2	Nearest neighbor graphs	180
Fig. A.10.3	Spatial time paths	181
Fig. A.10.4	Spider and temporal contiguity graphs	183
Fig. A.10.5	Spatial smoothing of ACN county prostate rates	184
Fig. A.10.6	Regionalization of State incomes using AZP	185
Fig. A.10.7	Spatial regression model specification	187
Fig. A.10.8	Spatial regression model object attributes	188
Fig. A.10.9	Spatial two stage least squares with HAC error variance	188
Fig. A.10.10	Architecture of spatial weights Web service	189
Fig. A.10.11	Weights Web service user interface	190
Fig. A.10.12	Weights in XML format	190

PART B Spatial Statistics and Geostatistics

B.1 The Nature of Georeferenced Data

Fig. B.1.1	Binary and standardized connectivity matrices based on area adjacencies	198
Fig. B.1.2	Stages in the construction of the spatial data matrix	200
Fig. B.1.3	Examples of attributes by levels of measurement and types of space	202
Fig. B.1.4	From geographical reality to the spatial data matrix	204
Fig. B.1.5	Cressie's (1993) typology of spatial data and the two conceptualizations of geographic reality	210

B.2 Exploratory Spatial Data Analysis

Fig. B.2.1	Displays of the reported Medicaid program quality score values 1986: a) stem and leaf display; b) stripchart with jittered points; c) boxplot with standard whiskers; d) histogram with overplotted density curves for selected bandwidths	222
Fig. B.2.2	Medicaid program quality scores 1986: a) empirical cumulative distribution function, and b) dotchart	223
Fig. B.2.3	Medicaid program quality scores, 1986: thematic cartography as a method for statistical display	226
Fig. B.2.4	North Carolina Freeman-Tukey transformed SIDS rates by county for 1974-1978 conditioned on four shingles of the Freeman-Tukey transformed nonwhite live birth rates	227
Fig. B.2.5	Choropleth maps of population per crime against property, rank wealth and percentage literacy, France	228
Fig. B.2.6	Choropleth maps of population per crime against property, conditioned on ranked wealth and percentage literacy, France	229
Fig. B.2.7	Seismic events near Fiji since 1964, conditioned on depth	230
Fig. B.2.8	Kernel density plots of seismic events near Fiji; three increasing bandwidth settings	231
Fig. B.2.9	Exploratory geostatistical display of Swiss precipitation data from the 1997 Spatial Interpolation Comparison contest: a) precipitation quartiles; b) plot of precipitation by northings; c) plot of precipitation by eastings; d) histogram and density of precipitation	233
Fig. B.2.10	Influence plots for trend surfaces, Swiss precipitation data: a) quadratic trend surface; b) cubic trend surface	233
Fig. B.2. 11	<i>h</i> -scatterplots: scatterplots of pairs of observed values conditioned on distance	235
Fig. B.2.12	Swiss precipitation data – binned classic and robust variogram values: a) variogram cloud display; b) variogram values	235
Fig. B.2.13	Detecting directionality in the variogram of Swiss precipitation data: a) variogram map showing binned semivariance values by direction and distance; b) classical variograms for four axes at 0°, 45°, 90° and 135°	236
Fig. B.2.14	Median polish for North Carolina SIDS data – the Freeman-Tukey transformed SIDS rates and fitted smoothed values are mean-centred to use the same scale as the residuals	238

Fig. B.2.15	Local G_i and G_i^* statistics: population per crime against property, France	240
Fig. B.2.16	Local I_i statistics for the null model, the residuals of the simultaneous autoregressive model, and the residuals of the linear model including literacy and wealth: population per crime against property, France	242
Fig. B.2.17	Conditioned choropleth LISA map: Moran's I_i for the null model conditioned on the LISA quadrant	242
Fig. B.2.18	Moran scatterplots for a) null; b) simultaneous autoregressive; c) linear model with covariates; and d) influence map for the three models	243
Fig. B.2.19	APLE plot and local APLE values for the population per crime rate: a) approximate profile-likelihood estimator plot, showing observations with influence; b) local APLE values, with observations with influence marked by asterisks	244
Fig. B.2.20	Six eigenvector maps for eigenvectors: null model	245
Fig. B.2.21	Two eigenvector maps for eigenvectors: linear model with covariates	245
Fig. B.2.22	Population per crime against property: a) population per crime against property; b) geographically weighted means; and c) geographically weighted standard deviations	246
Fig. B.2.23	Conditioned choropleth map of the geographically weighted standard deviation on the inverted crime rate, conditioned on population size	247
Fig. B.2.24	Maps of geographically weighted regression coefficients: a) intercept; b) percent literacy; c) rank wealth; and d) the coefficient of determination	248
B.4 Spat	ial Clustering	
Fig. B.4.1	The Moran scatter plot	291
B.5 Spat	ial Filtering	
Fig. B.5.1	Geographic distributions across the Cusco Department of Peru: a) transformed population density; (b) transformed elevation standard deviation	302
Fig. B.5.2	The Cusco Department of Peru: (a) geographic distribution of areal unit centroids; (b) a three-parameter gamma distribution description of the d_i values for $G_i(d)$; (c) four selected areal unit trajectories for identifying the d_i values for transformed population density	306
Fig. B.5.3	Geographic distributions across the Cusco Department of Peru of $G_i(d)$ - based spatial variates: (a) extracted from the transformed population density; (b) extracted from the transformed elevation standard deviation	306
Fig. B.5.4	The Cusco Department of Peru; magnitude in the choropleth maps is directly related to gray tone darkness: (a) the minimum spanning tree connecting the areal unit centroids; (b) E_1 , $MC/MC_{max} = 1$; (c) E_3 , $MC/MC_{max} = 0.78$; (d) E_9 , $MC/MC_{max} = 0.52$; (e) E_{14} , $MC/MC_{max} = 0.25$	308
Fig. B.5.5	Typology-based spatial filters for the Cusco Department of Peru: (a) for transformed population density; (b) for transformed elevation standard deviation	311

Fig. B.5.6	Generalized linear model (GLM) results: (a) the population density GLM spatial filter; (b) scatterplot of the predicted versus the observed <i>pd</i> ; (c) scatterplot of the predicted versus the observed <i>pd</i> with the four largest values set aside	313
Fig. B.5.7	Geographically varying coefficients for the GLM population density model: (a) spatially varying intercept term; (b) spatially varying slope coefficient	314
Fig. B.5.8	Generalized linear model (GLM) imputation results: (a) scatterplot of the imputed versus the observed population densities (pd) ; (b) scatterplot of the imputed versus the observed population densities (pd) with the four largest values set aside	316
B.6 The	Variogram and Kriging	
Fig. B.6.1	Discretization of the lag into bins for irregularly scattered data	322
Fig. B.6.2	Three idealized variogram forms: (a) unbounded; (b) bounded; and (c) is the spatially correlated component	326
Fig. B.6.3	(a) Directional variogram computed on the raw data (230 points) from the Yattendon Estate, and (b) directional variogram computed on the residuals from the class means	332
Fig. B.6.4	Experimental variograms computed by the method of moments (MoM) estimator for lag distances of 20 m, 15 m and 40 m, and for the complete data set of 230 sites [(a), (b) and (c), respectively], subset of 94 data [(d), (e), (f)] and subset of 47 data [(g), (h), (i)] for topsoil K on the Yattendon Estate	333
Fig. B.6.5	Directional variogram computed on the pH data from Broom's Barn Farm (433 sampling points): (a) with the best fitting isotropic model, and (b) with an isotropic exponential function	335
Fig. B.6.6	Variogram of yield 2001 for the Yattendon Estate: (a) experimental variogram, and (b) the experimental variogram with the fitted double spherical model	336
Fig. B.6.7	Maps of block kriged predictions of topsoil potassium at the Yattendon Estate for: (a) complete set of 230 data, (b) subset of 94 data, and (c) subset of 46 data	345
Fig. B.6.8	Maps of block kriged kriging variances for topsoil potassium at the Yattendon Estate for: (a) total of 230 data, (b) subset of 94 data, and (c) subset of 46 data	346
Fig. B.6.9	Map of punctually kriged kriging variances for topsoil potassium at the Yattendon Estate for the complete set of 230 data	347
Fig. B.6.10	Map of punctually kriged predictions for topsoil pH at the Broom's Barn Farm	348
Fig. B.6.11	Maps of wheat yield for 2001 at the Yattendon Estate for: (a) ordinary kriged predictions, (b) predictions of the long-range component of the variation, and (c) predictions of the short-range component of the variation	349

Part C Spatial Econometrics

C.5 Geographically Weighted Regression

Fig. C.5.1	Standardized mortality rates for bladder cancer among white males from 1970 to 1990 in the State Economic Areas of the contiguous United States	478
Fig. C.5.2	Estimated GWR coefficients for $\hat{\beta}_1$ (intercept), $\hat{\beta}_2$ (smoking proxy), $\hat{\beta}_3$ (log population density)	479
Fig. C.5.3	GWR estimated coefficients $\hat{\beta}_2$ versus $\hat{\beta}_1, \hat{\beta}_3$ versus $\hat{\beta}_1, \hat{\beta}_3$ versus $\hat{\beta}_2$	480
Fig. C.5.4	Estimated GWR coefficients for the intercept and the smoking proxy, parallel coordinate plot for condition indexes and variance decomposition proportions, and histogram of condition indexes with a selection set for SEAs with the thirty largest condition indexes for the largest variance component	482
Fig. C.5.5	Estimated GWR coefficients for smoking proxy and population density, scatter plot for variance decomposition proportions for these two regression terms, and histogram of condition indexes with a selection set for SEAs with both variance decomposition proportions greater than 0.6 for the largest variance component	483
Fig. C.5.6	GWR coefficients and SVCP coefficients for the intercept, smoking proxy, and population density	484
C.7 Mul	tilevel Modeling	
Fig. C.7.1	Typology of studies	509
Fig. C.7.2	Multilevel structure of repeated measurements of individuals over time across neighborhoods with individuals having multiple membership to	
	different neighborhoods across the time span	522

Part D The Analysis of Remotely Sensed Data

D.1 ARTMAP Neural Network Multisensor Fusion Model for Multiscale Land Cover Characterization

A comparison of error bound limits of ARTMAP and linear mixture	
models	535
Predictive and actual forest fraction cover	535
Predicted forest cover using ARTMAP and linear mixture models	536
Category visualization in the ARTMAP model	537
Predictive and actual forest cover class using multi-temporal images	539
	A comparison of error bound limits of ARTMAP and linear mixture models Predictive and actual forest fraction cover Predicted forest cover using ARTMAP and linear mixture models Category visualization in the ARTMAP model Predictive and actual forest cover class using multi-temporal images

D.2 Model Selection in Markov Random Fields for High Spatial Resolution Hyperspectral Data

Fig. D.2.1	Grey levels image of the first principal scores of the Lamar imagery	554
------------	--	-----

Fig. D.2.2	Lamar imagery scatter plot of the 128 bands mapped onto the correlation space spanned by the first two principal components and representative	
	bands selected for subsequent analysis	555
Fig. D.2.3	First-order lattice adjacencies	558
Fig. D.2.4	Second-order lattice adjacencies	558
Fig. D.2.5	Third-order lattice adjacencies	558
Fig. D.2.6	BIC-PL values of nine spatial auto-logistic models, fitted on a number of hyperspectral bands	559
Fig. D.2.7	BIC-PL values of nine spatial auto-binomial models, fitted on further hyperspectral bands	560

Part E Applications in Economic Sciences

E.2 Income Distribution Dynamics and Cross-Region Convergence in Europe

Fig. E.2.1	Distributions of relative (per capita) regional income, 1995 versus 2003	610
Fig. E.2.2	Tukey boxplots of relative (per capita) regional income across 257 European regions	612
Fig. E.2.3	Cross-profile dynamics across 257 European regions, retaining the ranking fixed at the initial year, relative (per capita) income, advancing upwards: 1995, 1999 and 2003	613
Fig. E.2.4	Relative income dynamics across 257 European regions, the estimated $g_5(z y)$: (a) stacked density plot, and (b) highest density regions boxplot	615
Fig. E.2.5	The ergodic density $f_{\infty}(z)$ implied by the estimated $g_5(z y)$ and the marginal density function $f_{1995}(y)$	617
Fig. E.2.6	Densities of relative (per capita) income, 1995 versus 2003: the spatial filtering view	619
Fig. E.2.7	Tukey boxplots of relative (per capita) income, across 257 European regions: the spatial filtering view	619
Fig. E.2.8	Stochastic kernel mapping from the original to the spatially filtered distribution, the estimated $g(\tilde{y} y)$: (a) the stacked conditional density plot, and (b) the highest density regions boxplot	620
Fig. E.2.9	The spatial filter view of relative income dynamics: the estimated $g_s(\tilde{z} \mid \tilde{y})$, (a) stacked density plot, and (b) highest density regions boxplot	621

Part F Applications in Environmental Sciences

F.1 A Fuzzy k-Means Classification and a Bayesian Approach for Spatial Prediction of Landslide Hazard

Fig. F.1.1	Distribution of landslides over the Clearwater National Forest drainage	
	during the winter 1995/96 storm events	667
Fig. F.1.2	Fuzziness performance index (F) and normalized classification entropy (H)	
	versus number of classes: (a) fuzziness exponent $\phi = 1.15$, and (b)	
	fuzziness exponent $\phi = 1.50$	669

Fig. F.1.3	Plot of $-[(\delta J_E / \delta \phi) c^{0.5}]$ versus ϕ for $c = 6$	670
Fig. F.1.4	Drapes of fuzzy k-means classification of training area with six classes	671
Fig. F.1.5	Drapes of the confusion index (CI) and the most dominate class	672
Fig. F.1.6	Bayesian model output. Probabilities of the occurrence of non-road related landslides in the CNF	674
Fig. F.1.7	Bayesian model output. Probabilities of the occurrence of road related landslides in the CNF	675
Fig. F.1.8	Difference of probabilities of the occurrence of non-road related versus road related landslides in the CNF	675
Fig. F.1.9	Drape of predicted landslide hazard for non-road related landslides using Bayesian modeling	676
Fig. F.1.10	Drape of predicted landslide hazard for road related landslides using Bayesian modeling	676
Fig. F.1.11	Drape of predicted landslide hazard difference for road related and non- road landslides using Bayesian modeling	677
F.2 Inco Mod	rporating Spatial Autocorrelation in Species Distribution els	
Fig. F.2.1	Mojave Desert study area. The square highlights the section used for predictions in Figs. F.2.3 and F.2.4	687
Fig. F.2.2	Mean AUC values (with standard deviation) from all alliances for each model	695
Fig. F.2.3	Generalized linear model predictions of Yucca brevifolia (YUBR): a) non- spatial model; b) model with kriged autocovariate; c) model with mean simulation autocovariate; d) model with single simulation autocovariate	696
Fig. F.2.4	Classification tree model predictions of Yucca brevifolia (YUBR): a) non- spatial model; b) model with kriged autocovariate; c) model with mean simulation autocovariate; d) model with single simulation autocovariate	697

F.3 A Web-based Environmental Decision Support System for Environmental Planning and Watershed Management

Fig. F.3.1	The study area	705
Fig. F.3.2	Overall client server transaction	706
Fig. F.3.3a	Web-based user interface for multi-criteria analysis	713
Fig. F.3.3b	User input window for the model	713
Fig. F.3.4	Overall ESI model process	714
Fig. F.3.5	A screen shot of portion of the ESI calculation which was written in ArcView avenue script	715

Part G Applications in Health Sciences

G.1 Spatio-Temporal Patterns of Viral Meningitis in Michigan, 1993-2001

Fig. G.1.1	Cumulative incidence per 100,000 of viral meningitis by state, continental United States, 1989-1994	723
Fig. G.1.2	(a) Weekly number of viral meningitis cases in Michigan, 1993-2001;(b) the autocorrelation function (ACF) from a zero to a seven-year lag	726
Fig. G.1.3	Cumulative incidence per 100,000 of viral meningitis in Michigan by county, 1993-2001, age-adjusted to the 1990 population	727
Fig. G.1.4	Coefficient of variation (CV) of annual incidence of viral meningitis cases in Michigan by county, 1993-2001	728
Fig. G.1.5	Spatio-temporal clusters of viral meningitis cases by county in Lower Michigan, 1993-2001	729
G.2 Spac	ce-Time Visualization and Analysis in the Cancer Atlas Viewer	
Fig. G.2.1	Time enabled visualization in the Cancer Atlas Viewer	742
Fig. G.2.2	Difference maps for colon cancer mortality rates between the time intervals 1990-1994 and 1970-1974	743
Fig. G.2.3	State Economic Areas shaded by their rates for colon cancer mortality in the years 1990-1994	744
Fig. G.2.4	Statistical disagreement about the significance of the colon cancer mortality rate for white males in Columbus (GA)	746
Fig. G.2.5	Statistical disagreement about the significance of the colon cancer mortality rate for African-American females (RBF) in Greenville (SC)	747
Fig. G.2.6	Persistent clustering of low white male colon cancer mortality rates (RWM) centered on Auburn (AL)	748
G.3 Exp	osure Assessment in Environmental Epidemiology	
Fig. G.3.1	Public and private water supply status in Southeastern Michigan in 1932, 1964, and 1993	758
Fig. G.3.2	Feature of Time-GIS. Town boundaries change with time (1950, 1992)	759
Fig. G.3.3	Time series graphs of arsenic exposure: cases and controls	761
Fig. G.3.4	Histogram of source of drinking water in 1965: cases and controls	761
Fig. G.3.5	Scatter plot of arsenic exposure and cigarettes smoked in 1972: cases and	
Fig G36	Controls	762
1.15. 0.5.0	exposure me-mes for eigerette smoking: cases and controls	762

Fig. G.3.7 Exposure life-lines for arsenic exposure and cigarette smoking: cases and controls 764

List of Tables

PART A GI Software Tools

A.1 Spatial Statistics in ArcGIS

Tab. A.1.1	Tools in the measuring geographic distributions toolset	29
Tab. A.1.2	A summary of the tools in the analyzing patterns toolset	31
Tab. A.1.3	A summary of the tools in the mapping clusters toolset	33
Tab. A.1.4	A summary of the tools in the modeling spatial relationships toolset	35
Tab. A.1.5	A variety of potential applications for regression analysis	37

A.2 Spatial Statistics in SAS

Tab. A.2.1	Neighbor file format	48
Tab. A.2.2	Eigenvector spatial filtering for ArcGIS and SAS output file descriptions	50
A.4 Geol	Da: An Introduction to Spatial Data Analysis	
Tab. A.4.1	GeoDa functionality overview	77
A.5 STA	RS: Space-Time Analysis of Regional Systems	
Tab. A.5.1	Geocomputational methods contained in STARS	<i>93</i>
Tab. A.5.2	Visualization capabilities in STARS	94
A.6 Spac Com	ce-Time Intelligence System Software for the Analysis of applex Systems	
Tab. A.6.1	Summary of STIS functionality	114
A.7 Geo	statistical Software	
Tab. A.7.1	List of main geostatistical software with the corresponding reference	126
Tab. A.7.2	List of functionalities for main geostatistical software	131

A.10	PySAL: A Python	Library of Spatial Analytical Methods
------	-----------------	---------------------------------------

Tab. A.10.1	PySAL functionality by component	179
-------------	----------------------------------	-----

PART B Spatial Statistics and Geostatistics

B.5 Spatial Filtering

Tab. B.5.1	Transformed population density and elevation variability: spatial autocorrelation in terms of <i>MC</i> and <i>GR</i>	303
Tab. B.5.2	Spatial autocorrelation contained in the 30 PCNM eigenvectors with non-zero eigenvalues	309
Tab. B.5.3	Eigenvector spatial filter regression results using a 10 percent level of significance selection criterion	310
Tab. B.5.4	Geographically varying coefficients: spatial autocorrelation in terms of MC and GR	315

B.6 The Variogram and Kriging

Tab. B.6.1	Summary statistics	331
Tab. B.6.2	Variogram model parameters	334

Part C Spatial Econometrics

C.2 Spatial Panel Data Models

Tab. C.2.1	Two goodness-of-fit measures of the four spatial panel data models	401
Tab. C.2.2	Prediction formula of the four spatial panel data models	403

C.3 Spatial Econometric Methods for Modeling Origin-Destination Flows

Tab. C.3.1	Data organization convention		414
Tab. C.3.2	Unadjusted and adjusted model estimates		425
Tab. C.3.3	Test for significant differences between the unadjusted and adjusted model estimates		426
Tab. C.3.4	Zero intraregional flows versus non-zero intraregional flows	,	426
Tab. C.3.5	Spatial Tobit experimental results	í	429

C.4 Spatial Econometric Model Averaging

Tab. C.4.1	Posterior model probabilities for varying spatial neighbors	452
Tab. C.4.2	Metropolitan sample SDM model estimates	453
Tab. C.4.3	Metropolitan sample MC^3 results for $m = 7$ neighbors	454

Tab.	C.4.4	Model averaged estimates based on the top 12 models	455
Tab.	C.4.5	Posterior model probabilities for the top 12 models and associated neighbors	457
Tab.	C.4.6	Model averaging over both neighbors and variables	457
C.5	Geo	granhically Weighted Regression	
Tab.	C.5.1	Condition index and variance-decomposition proportions for the largest variance component	480
C.6	Exp	ansion Method, Dependency, and Multimodeling	
Tab.	C.6.1	Regression results	495
Tab.	C.6.2	Multimodeling results	500
Tab.	C.6.3	Group means	501
Par	t D	The Analysis of Remotely Sensed Data	
ומ	ART	MAP Neural Network Multicensor Eusion Model for	
2.1	Mul	tiscale Land Cover Characterization	
Tab.	D.1.1	RMS error	536
Tab.	D.1.2	RMS error of the testing data	539
Tab.	D.1.3	RMS error of the whole image	540
D.2	Mod	lel Selection in Markov Random Fields for High Spatial	
	Rese	olution Hyperspectral Data	
Tab.	D.2.1	Models used in the application	556
Tab.	D.2.2	Parametric specifications used in the application	556
Par	ŧΕ	Applications in Economic Sciences	
E.1	The in E	Impact of Human Capital on Regional Labor Productivity urope	
Tab.	E.1.1	Parameter estimates from SDM and SEM specifications	593
Tab.	E.1.2	Direct, indirect and total impact estimates	594
E.3	A M to E	ulti-Equation Spatial Econometric Model, with Application U Manufacturing Productivity Growth	
Tab.	E.3.1	Unrestricted model estimates	639

-

Tab. E.3.2	Conditional tests of core-periphery contrasts	640
Tab. E.3.3	Conditional tests of time homogeneity	641
Tab. E.3.4	Final model estimates	643

Part F Applications in Environmental Sciences

F.1 A Fuzzy k-Means Classification and a Bayesian Approach for Spatial Prediction of Landslide Hazard

Tab. F.1.1	Cluster centers for six classes	670
Tab. F.1.2	Conditional probabilities of fuzzy <i>k</i> -means predictor datasets for development of the Bayesian models for the CNF	673
Tab. F.1.3	Proportion of presence/absence associated with probabilities for non-road and road related landslides	678
Tab. F.1.4	Evaluation of new and existing modeling techniques in the CNF derived by arbitrary cut-off values for the NRR landslides	679
Tab. F.1.5	Evaluation of new and existing modeling techniques in the CNF derived by arbitrary cut-off values for the RR landslides	679
F.2 Inco	rporating Spatial Autocorrelation in Species Distribution Models	
Tab. F.2.1	Environmental variables used in this study	688
Tab. F.2.2	Vegetation alliances modeled, and the proportion of the full (test and train, $n = 3,819$) dataset in which they are present	688
F.3 A W Plan	eb-based Environmental Decision Support System for Environmental ning and Watershed Management	
Tab. F.3.1	Criteria used in the analysis and their weights	709
Tab. F.3.2	Base data layers collected and their sources	709
Part G	Applications in Health Sciences	
G.1 Spat	io-Temporal Patterns of Viral Meningitis in Michigan, 1993-2001	
Tab. G.1.1	Relative presence of identified causative viruses associated with viral meningitis cases in Michigan, June to December 2001	730
G.2 Spac	e-Time Visualization and Analysis in the Cancer Atlas Viewer	

Tab. G.2.1	A listing of a few online atlas projects	738
Tab. G.2.2	Moran's I statistics and p-values calculated from 999 Monte Carlo	
	randomizations	744

Tab. G.2.3	Classification of 1980 locations (99 regions over five time intervals by four population subgroups) by the local Moran and the Getis-Ord statistic G^*	745
Tab. G.2.4	Some characteristics of the non-concordant classes from Tab. G.2.3	745
Tab. G.2.5	Cluster persistence over time, measured in terms of number of cases. Totals are from all race-gender subgroups over all pairs of two sequential times	749

G.3 Exposure Assessment in Environmental Epidemiology

Tab. G.3.1	Spatio-temporal dataset format for STIS point features: residential mobility	
	history and water consumption history for two participants	757