MARCEL BERGER

Geometry Revealed

A Jacob's Ladder to Modern Higher Geometry

Table of Contents

About the Author V		
Intro	duction	VII
Chapter I. Points and lines in the plane		1
I.1.	In which setting and in which plane are we working? And right away an utterly simple problem of Sylvester about the collinearity of points	1
I.2.	Another naive problem of Sylvester, this time on the geometric probabilities of four points	6
I.3.	The essence of affine geometry and the fundamental theorem	12
I.4.	Three configurations of the affine plane and what has happened to them: Pappus, Desargues and Perles	17
I.5.	The irresistible necessity of projective geometry and the construction	17
	of the projective plane	23
I.6.	Intermezzo: the projective line and the cross ratio	28
I.7.	Return to the projective plane: continuation and conclusion	31
I.8.	The complex case and, better still, Sylvester in the complex case:	
	Serre's conjecture	40
I.9.	Three configurations of space (of three dimensions): Reye, Möbius and Schläfli	40
T 10	and Schläfli Arrangements of hyperplanes	43
		47 48
	I. XYZ	
Chap	oter II. Circles and spheres	61
II.1.	Introduction and Borsuk's conjecture	61
II.2.	A choice of circle configurations and a critical view of them	66
II.3.	A solitary inversion and what can be done with it	78
II.4.	How do we compose inversions? First solution: the conformal group	
	on the disk and the geometry of the hyperbolic plane	82
II.5.	Second solution: the conformal group of the sphere, first seen	
	algebraically, then geometrically, with inversions in dimension 3	
	(and three-dimensional hyperbolic geometry). Historical appearance	
	of the first fractals	87
II.6.	Inversion in space: the sextuple and its generalization thanks	
	to the sphere of dimension 3	91
II.7.	Higher up the ladder: the global geometry of circles and spheres	96
II.8.	Hexagonal packings of circles and conformal representation	103

Circles of Apollonius	113
Ζ	116
graphy	137
ter III. The sphere by itself: can we distribute points on it evenly?	141
The metric of the sphere and spherical trigonometry	141
	147
ozone, electrons, enemy dictators, golf balls, virology, physics of	
	149
	170
	172
	174
	175
	177
ography	178
ter IV. Conics and quadrics	181
Motivations, a definition parachuted from the ladder, and why	181
Before Descartes: the real Euclidean conics. Definition and some	
classical properties	183
	198
	200
	205
	208
	212
	216
	226
•	232
	242
ography	245
ter V. Plane curves	249
Plain curves and the person in the street: the Jordan curve theorem, the	
turning tangent theorem and the isoperimetric inequality	249
What is a curve? Geometric curves and kinematic curves	254
	257
	259
	260
and curvature (scalar and algebraic): Winding number	263
	Z

VI.3.

VI.4.

VI 5

VI.6.

VI.7.

VI.8.

VI.9.

VI. XYZ

VII.1.

VII.2.

VII.3.

VII.4.

VII.5.

VII.6.

VII.7.

V.7.	The algebraic curvature is a characteristic invariant: manufacture	
	of rulers, control by the curvature	269
V.8.	The four vertex theorem and its converse; an application to physics .	271
V.9.	Generalizations of the four vertex theorem: Arnold I	278
V.10.	Toward a classification of closed curves: Whitney and Arnold II	281
V.11.	Isoperimetric inequality: Steiner's attempts	295
V.12.	The isoperimetric inequality: proofs on all rungs	298
V.13.	Plane algebraic curves: generalities	305
V.14.	The cubics, their addition law and abstract elliptic curves	308
	Real and Euclidean algebraic curves	320
	Finite order geometry	328
	ΖΖ	331
	ography	336
Chap	ter VI. Smooth surfaces	341
VI.1.	Which objects are involved and why? Classification of compact	
	surfaces	341
VI.2.	The intrinsic metric and the problem of the shortest path	345

The geodesics, the cut locus and the recalcitrant ellipsoids

An indispensable abstract concept: Riemannian surfaces

Problems of isometries: abstract surfaces versus surfaces of \mathbb{E}^3 ...

Local shape of surfaces: the second fundamental form, total curvature and mean curvature, their geometric interpretation, the *theorema egregium*, the manufacture of precise balls

What is known about the total curvature (of Gauss)

What we don't entirely know how to do for surfaces

Convex functions of several variables, an important example

of the isoperimetric inequality and other applications

Volume and area of (compacts) convex sets, classical volumes: Can the volume be calculated in polynomial time?

Volume, area, diameter and symmetrizations: first proof

VI.10. Surfaces and genericity

Chapter VII. Convexity and convex sets

 347

357

361

364

373

380

386

391

397

399

403

409

409

412

415

417

420

428

437

VII.8.	Volume and Minkowski addition: the Brunn-Minkowski theorem	
	and a second proof of the isoperimetric inequality	439
VII.9.	Volume and polarity	444
	The appearance of convex sets, their degree of badness	446
	Volumes of slices of convex sets	459
VII.12.	Sections of low dimension: the concentration phenomenon	
	and the Dvoretsky theorem on the existence of almost	
	spherical sections	470
	Miscellany	477
VΠ.14.	Intermezzo: can we dispose of the isoperimetric inequality?	493
Bibliog	raphy	499
Chapte	er VIII. Polygons, polyhedra, polytopes	505
VIII.1.	Introduction	505
VIII.2.	Basic notions	506
VIII.3.	Polygons	508
VIII.4.	Polyhedra: combinatorics	513
VIII.5.	Regular Euclidean polyhedra	518
VIII.6.	Euclidean polyhedra: Cauchy rigidity and Alexandrov existence .	524
VIII.7.	Isoperimetry for Euclidean polyhedra	530
VIII.8.	Inscribability properties of Euclidean polyhedra; how to encage	
	a sphere (an egg) and the connection with packings of circles	532
VIII.9.	Polyhedra: rationality	537
VIII.10	Polytopes ($d \ge 4$): combinatorics I	539
	. Regular polytopes $(d \ge 4)$	544
	. Polytopes $(d \ge 4)$: rationality, combinatorics II	550
VIII.13	. Brief allusions to subjects not really touched on	555
Bibliog	raphy	558
Chapte	er IX. Lattices, packings and tilings in the plane	563
IX.1.	Lattices, a line in the standard lattice \mathbb{Z}^2 and the theory of continued	
	fractions, an immensity of applications	563
IX.2.	Three ways of counting the points \mathbb{Z}^2 in various domains: pick	
	and Ehrhart formulas, circle problem	567
IX.3.	Points of \mathbb{Z}^2 and of other lattices in certain convex sets: Minkowski's	
	theorem and geometric number theory	573
IX.4.	Lattices in the Euclidean plane: classification, density, Fourier analysis	
	on lattices, spectra and duality	576
IX.5.	Packing circles (disks) of the same radius, finite or infinite in number,	
	in the plane (notion of density). Other criteria	586
IX.6.	Packing of squares, (flat) storage boxes, the grid (or beehive) problem	593
IX.7.	Tiling the plane with a group (crystallography). Valences, earthquakes	596
IX.8.	Tilings in higher dimensions	603

IX.9.	Algorithmics and plane tilings: aperiodic tilings and decidability, classification of Penrose tilings	607
IX 10	Hyperbolic tilings and Riemann surfaces	617
	ography	620
Dioin	Suprij · · · · · · · · · · · · · · · · · · ·	020
Chap	ter X. Lattices and packings in higher dimensions	623
	Lattices and packings associated with dimension 3	623
	Optimal packing of balls in dimension 3, Kepler's conjecture at last	
	resolved	629
X.3.	A bit of risky epistemology: the four color problem and the Kepler	620
V A	conjecture	639 641
	Lattices in arbitrary dimension: examples	641 648
	Lattices in arbitrary dimension: density, laminations	
	Packings in arbitrary dimension: various options for optimality Error correcting codes	654 659
	Duality, theta functions, spectra and isospectrality in lattices	667
	ography	673
DIDIR		075
Chap	ter XI. Geometry and dynamics I: billiards	675
XI.1.	Introduction and motivation: description of the motion of two particles	
	of equal mass on the interior of an interval	675
XI.2.	Playing billiards in a square	679
XI.3.	Particles with different masses: rational and irrational polygons	689
XI.4.	Results in the case of rational polygons: first rung	692
XI.5.	Results in the rational case: several rungs higher on the ladder	696
XI.6.	Results in the case of irrational polygons	705
XI.7.	-	710
XI.8.		710
XI.9.	1	713
). General convex billiards	717
	. Billiards in higher dimensions	728
	YZ Concepts and language of dynamical systems	730
Biblio	ography	735
Chap	ter XII. Geometry and dynamics II: geodesic flow on a surface	739
XII.1	. Introduction	739
XII.2	. Geodesic flow on a surface: problems	741
XII.3	. Some examples for sensing the difficulty of the problem	743
	Existence of a periodic trajectory	751
XII.5	. Existence of more than one, of many periodic trajectories;	
	and can we count them?	757
XII.6	. What behavior can be expected for other trajectories?	
	Ergodicity, entropies	772

XII.7. Do the mechanics determine the metric?	779
XII.8. Recapitulation and open questions	781
XII.9. Higher dimensions	781
Bibliography	782
Selected Abbreviations for Journal Titles	785
Name Index	789
Subject Index	795
Symbol Index	827