

Chiral Amine Synthesis

Methods, Developments and Applications

Edited by

Thomas C. Nugent

WILEY-
VCH

WILEY-VCH Verlag GmbH & Co. KGaA

Contents

Foreword VII

Preface XVII

List of Contributors XXIII

1	Stereoselective Synthesis of α-Branched Amines by Nucleophilic Addition of Unstabilized Carbanions to Imines	1
	<i>André B. Charette</i>	
1.1	Introduction	1
1.2	Overview of the Methods for the Preparation of Imines	3
1.2.1	N-Aryl and N-Alkyl Imines and Hydrazones	3
1.2.2	N-Sulfinyl Imines	3
1.2.3	N-Sulfonyl Imines	4
1.2.4	N-Phosphinoyl Imines	5
1.2.5	N-Acy1 and N-Carbamoyl Imines	6
1.3	Chiral Auxiliary-Based Approaches	6
1.3.1	Imines Derived from Chiral Aldehydes	7
1.3.2	Imines Bearing a Chiral Protecting/Activating Group	9
1.4	Catalytic Asymmetric Nucleophilic Addition to Achiral Imines	15
1.4.1	Catalytic Asymmetric Addition of sp^3 Hybridized Carbanions	16
1.4.1.1	Copper-Catalyzed Dialkylzinc Additions	16
1.4.1.2	Zinc Alkoxide-Catalyzed Dialkylzinc Additions	20
1.4.1.3	Early Transition Metal (Zr, Hf)-Catalyzed Dialkylzinc Additions	20
1.4.1.4	Rhodium-Catalyzed Dialkylzinc Addition Reactions	23
1.4.2	Catalytic Asymmetric Allylation of Imines	24
1.4.3	Catalytic Asymmetric Addition of sp^2 Hybridized Carbanions	29
1.4.3.1	Catalytic Asymmetric Vinylation	31
1.4.3.2	Catalytic Asymmetric Arylation	32
1.4.3.2.1	Amino Alcohol-Catalyzed Addition of Organozinc Reagents	32
1.4.3.2.2	Rhodium Phosphine-Catalyzed Arylation of Imines	34
1.4.3.2.3	Rhodium Diene-Catalyzed Arylation of Imines	38
1.4.4	Catalytic Asymmetric Addition of sp Hybridized Carbanions	39

1.5	Conclusion 42
	References 44
2	Asymmetric Methods for Radical Addition to Imino Compounds 51
	<i>Gregory K. Friesad</i>
2.1	Background and Introduction 51
2.2	Intermolecular Radical Addition Chiral N-Acylhydrazones 52
2.2.1	Design of Chiral N-Acylhydrazones 52
2.2.2	Preparation of Chiral N-Acylhydrazones 54
2.2.3	Tin-Mediated Addition of Secondary and Tertiary Radicals 55
2.2.4	Tin-Free Radical Addition 58
2.2.5	Manganese-Mediated Radical Addition 59
2.2.6	Manganese-Mediated Coupling with Multifunctional Precursors 60
2.2.6.1	Hybrid Radical–Ionic Annulation 60
2.2.6.2	Precursors Containing Hydroxyl or Protected Hydroxyl Groups 62
2.2.6.3	Ester-Containing N-Acylhydrazones 64
2.2.6.4	Additions to Ketone Hydrazones 65
2.3	Asymmetric Catalysis of Radical Addition 67
2.4	Closing Remarks 68
	References 69
3	Enantioselective Synthesis of Amines by Chiral Brønsted Acid Catalysts 75
	<i>Masahiro Terada and Norie Momiyama</i>
3.1	Introduction 75
3.2	Carbon–Carbon Bond Forming Reactions 76
3.2.1	Mannich and Related Reactions 76
3.2.1.1	Mannich Reaction 76
3.2.1.2	Nucleophilic Addition of Diazoacetates to Aldimine 81
3.2.1.3	Vinylogous Mannich Reaction 83
3.2.1.4	Aza-Petasis–Ferrier Rearrangement 84
3.2.2	One-Carbon Homologation Reactions 85
3.2.2.1	Strecker Reaction 85
3.2.2.2	Aza-Henry Reaction 86
3.2.2.3	Imino-Azaenamine Reaction 87
3.2.3	Friedel–Crafts and Related Reactions 87
3.2.3.1	Friedel–Crafts Reaction via Activation of Aldimines 87
3.2.3.2	Friedel–Crafts Reaction via Activation of Electron-Rich Alkenes 91
3.2.3.3	Pictet–Spengler Reaction 93
3.2.4	Cycloaddition Reactions 94
3.2.4.1	Hetero-Diels–Alder Reaction of Aldimines with Siloxydienes 94
3.2.4.2	Direct Cycloaddition Reaction of Aldimines with Cyclohexenone 95
3.2.4.3	Inverse Electron-Demand Aza-Diels–Alder Reaction (Povarov Reaction) 96

3.2.4.4	1,3-Dipolar Cycloaddition Reaction	97
3.2.5	Aza–Ene-Type Reactions	99
3.2.5.1	Aza–Ene-Type Reaction of Aldimines with Enecarbamates	99
3.2.5.2	Cascade Transformations Based on Tandem Aza–Ene-Type Reaction	99
3.2.5.3	Two-Carbon Homologation of Hemiaminal Ethers	100
3.2.5.4	Homocoupling Reaction of Enecarbamates	102
3.2.6	Miscellaneous Reactions	104
3.2.6.1	Aza-Cope Rearrangement	104
3.2.6.2	Aldol-Type Reaction of Azlactones with Vinyl Ethers	104
3.2.6.3	Cooperative Catalysis by Metal Complexes and Chiral Phosphoric Acids	106
3.3	Carbon–Hydrogen Bond Forming Reactions	108
3.3.1	Transfer Hydrogenation of Acyclic and Cyclic Imines	109
3.3.2	Cascade Transfer Hydrogenation of Quinoline and Pyridine Derivatives	113
3.3.3	Application of Transfer Hydrogenation to Cascade Reaction	116
3.4	Carbon–Heteroatom Bond Forming Reactions	117
3.4.1	Hydroporphosylation (Kabachnik–Fields Reaction)	117
3.4.2	Formation of (Hemi)Aminals	119
3.4.3	Nucleophilic Ring Opening of Aziridines and Related Reactions	121
3.5	Conclusion	123
	References	125
4	Reduction of Imines with Trichlorosilane Catalyzed by Chiral Lewis Bases	131
	<i>Pavel Kočovský and Sigita Stoenčius</i>	
4.1	Introduction	131
4.2	Formamides as Lewis-Basic Organocatalysts in Hydrosilylation of Imines	132
4.3	Other Amides as Organocatalysts in Hydrosilylation of Imines	141
4.4	Sulfinamides as Organocatalysts in Hydrosilylation of Imines	143
4.5	Supported Organocatalysts in Hydrosilylation of Imines	144
4.6	Mechanistic Considerations	147
4.7	Synthetic Applications	149
4.8	Conclusions	151
4.9	Typical Procedures for the Catalytic Hydrosilylation of Imines	152
4.9.1	Catalytic Hydrosilylation of Simple Imines	152
4.9.2	Catalytic Hydrosilylation of Enamines	153
	References	154
5	Catalytic, Enantioselective, Vinylogous Mannich Reactions	157
	<i>Christoph Schneider and Marcel Sickert</i>	
5.1	Introduction	157
5.2	Vinylogous Mukaiyama–Mannich Reactions of Silyl Dienolates	159
5.3	Direct Vinylogous Mannich Reactions of Unmodified Substrates	170

5.4	Miscellaneous	174
5.5	Conclusion	175
	References	176
6	Chiral Amines from Transition-Metal-Mediated Hydrogenation and Transfer Hydrogenation	179
	<i>Tamara L. Church and Pher G. Andersson</i>	
6.1	Scope and Related Publications	179
6.2	Chiral Amines with a Disubstituted Nitrogen Atom, HNR^*R^1	179
6.2.1	Direct Asymmetric Hydrogenation of Alkyl- and Aryl-Substituted Imines	179
6.2.1.1	Development	180
6.2.1.1.1	A Representative Synthesis	183
6.2.1.2	Pressure in the Asymmetric Hydrogenation of Alkyl- and Aryl-Substituted Imines	183
6.2.1.3	Reducing the Environmental Impact of the Reaction	185
6.2.2	Direct Asymmetric Hydrogenation of Heteroaromatics	190
6.2.2.1	Quinolines and Isoquinolines	190
6.2.2.1.1	Quinolines – A Representative Synthesis	195
6.2.2.1.2	Isoquinolines – A Representative Synthesis	196
6.2.2.2	Quinoxalines	197
6.2.2.3	Pyridines	198
6.2.3	Direct Asymmetric Hydrogenation of “Activated” Imines	202
6.2.4	Asymmetric Transfer Hydrogenation of Imines	204
6.2.4.1	Reducing the Environmental Impact of the Reaction	207
6.2.4.2	Syntheses Using the Asymmetric Transfer Hydrogenation of Imines as a Key Step	211
6.3	Chiral Amines with Trisubstituted Nitrogen, $\text{NR}^*\text{R}^1\text{R}^2$	211
6.3.1	Hydrogenation and Transfer Hydrogenation of <i>N,N</i> -Disubstituted Iminiums	211
6.3.2	Hydrogenation and Transfer Hydrogenation of Enamines	213
6.4	Conclusion	216
	References	218
7	Asymmetric Reductive Amination	225
	<i>Thomas C. Nugent</i>	
7.1	Introduction	225
7.2	Transition Metal-Mediated Homogeneous Reductive Amination	226
7.3	Enantioselective Organocatalytic Reductive Amination	231
7.4	Diastereoselective Reductive Amination	234
7.4.1	Stereoselective Reductive Amination with Chiral Ketones	234
7.4.2	The Phenylethylamine Auxiliary and Stereoselective Reductive Amination	237
7.4.3	The <i>tert</i> -Butylsulfinamide Auxiliary and Stereoselective Reductive Amination	240

7.5	Conclusions	243
	References	244
8	Enantioselective Hydrogenation of Enamines with Monodentate Phosphorus Ligands	247
	<i>Qin-Lin Zhou and Jian-Hua Xie</i>	
8.1	Introduction	247
8.2	Asymmetric Hydrogenation of Enamides	249
8.2.1	Chiral Monodentate Phosphoramidite Ligands	249
8.2.2	Chiral Monodentate Phosphite Ligands	257
8.2.3	Other Chiral Monodentate Phosphorus Ligands	262
8.2.4	Mixed Chiral Monodentate Phosphorus Ligands	263
8.3	Asymmetric Hydrogenation of <i>N,N</i> -Dialkyl Enamines	264
8.4	Conclusion and Outlook	269
	References	270
9	Bidentate Ligands for Enantioselective Enamide Reduction	273
	<i>Xiang-Ping Hu and Zhuo Zheng</i>	
9.1	Introduction	273
9.2	Catalytic Enantioselective Hydrogenation of Enamides	274
9.2.1	Synthesis of Enamides	274
9.2.2	Catalytic Asymmetric Hydrogenation of Acyclic Enamides	276
9.2.2.1	Chiral Phospholane Ligands for Rh-Catalyzed Asymmetric Hydrogenation	276
9.2.2.2	Chiral 1,4-Diphosphine Ligands for Rh-Catalyzed Asymmetric Hydrogenation	278
9.2.2.3	Bisaminophosphine Ligands for Rh-Catalyzed Asymmetric Hydrogenation	283
9.2.2.4	Unsymmetrical Hybrid Phosphorus-Containing Ligands for Rh-Catalyzed Asymmetric Hydrogenation	284
9.2.3	Catalytic Asymmetric Hydrogenation of Cyclic Enamides	289
9.3	Conclusions	296
	References	297
10	Enantioselective Reduction of Nitrogen-Based Heteroaromatic Compounds	299
	<i>Da-Wei Wang, Yong-Gui Zhou, Qing-An Chen, and Duo-Sheng Wang</i>	
10.1	Asymmetric Hydrogenation of Quinolines	299
10.1.1	Ir- and Ru-Catalyzed Asymmetric Hydrogenation of Quinolines	299
10.1.2	Organocatalyzed Asymmetric Transfer Hydrogenation of Quinolines	318
10.2	Asymmetric Hydrogenation of Isoquinolines	320
10.3	Asymmetric Hydrogenation of Indoles	322
10.4	Asymmetric Hydrogenation of Pyrroles	327
10.5	Asymmetric Hydrogenation of Quinoxalines	329

10.6	Asymmetric Hydrogenation of Pyridine Derivatives	329
10.7	Summary and Outlook	336
	References	337
11	Asymmetric Hydroamination	341
	<i>Alexander L. Reznichenko and Kai C. Hultzsch</i>	
11.1	Introduction: Synthesis of Amines via Hydroamination	341
11.2	Hydroamination of Simple, Nonactivated Alkenes	342
11.2.1	Intermolecular Hydroamination of Simple Alkenes	342
11.2.2	Intramolecular Asymmetric Hydroamination of Simple Aminoalkenes	346
11.2.2.1	Rare Earth Metal-Based Catalysts	346
11.2.2.2	Alkali Metal-Based Catalysts	353
11.2.2.3	Group 4 Metal-Based Catalysts	356
11.2.2.4	Organocatalytic Asymmetric Hydroamination	358
11.3	Hydroamination of Dienes, Allenes, and Alkynes	360
11.3.1	Intermolecular Hydroaminations	360
11.3.2	Intramolecular Reactions	361
11.4	Hydroamination with Enantiomeric Pure Amines	363
11.4.1	Hydroaminations Using Achiral Catalysts	363
11.4.2	Kinetic Resolution of Chiral Aminoalkenes	366
11.5	Synthesis of Chiral Amines via Tandem Hydroamination/ Hydrosilylation	368
11.6	Conclusions	369
11.7	Experimental Section	369
	References	372
12	Enantioselective C–H Amination	377
	<i>Nadège Boudet and Simon B. Blakey</i>	
12.1	Introduction	377
12.2	Background	378
12.3	Racemic C–H Amination	379
12.3.1	Intramolecular C–H Amination	379
12.3.2	Intermolecular C–H Amination	382
12.4	Substrate-Controlled Chiral Amine Synthesis via C–H Amination	384
12.5	Enantioselective C–H Amination of Achiral Substrates	386
12.5.1	Enantioselective C–H Amination with Rhodium(II) Catalysts	386
12.5.2	Enantioselective C–H Amination with Ruthenium(II) Catalysts	390
12.6	Conclusion	392
	References	394
13	Chiral Amines Derived from Asymmetric Aza-Morita–Baylis–Hillman Reaction	397
	<i>Lun-Zhi Dai and Min Shi</i>	
13.1	Introduction	397

13.2	Recent Mechanistic Insights	398
13.3	Asymmetric Aza-MBH Reaction	400
13.4	Chiral Auxiliary-Induced Diastereoselective Aza-MBH Reaction	400
13.5	Chiral Tertiary Amine Catalysts	401
13.5.1	Cinchona-Derived Bifunctional Catalysts	401
13.5.2	Chiral Binol-Derived Bifunctional Amine Catalysts	408
13.5.3	Chiral Acid/Achiral Amine	410
13.6	Chiral Phosphine Catalysts	411
13.7	Chiral Bifunctional N-Heterocyclic Carbenes	418
13.8	Chiral Ionic Liquids as Reaction Medium	419
13.9	Aza-MBH-Type Reaction to Obtain Chiral Amines	419
13.10	Strategies for the Removal of Protecting Groups	422
13.11	Selected Typical Experimental Procedures	423
13.11.1	Typical Procedures for 1a-Catalyzed Aza-MBH Reaction of Methyl Acrylate with <i>N</i> -Benzylidene-4-Nitrobenzenesulfonamide	423
13.11.2	Typical Procedures for β -ICD-Catalyzed Aza-MBH Reaction of MVK with <i>N</i> -(<i>p</i> -Ethylbenzenesulfonyl)Benzaldimine	423
13.11.3	Typical Procedures for Chiral Phosphine 23-Catalyzed Aza-MBH Reaction of MVK with <i>N</i> -(Benzylidene)-4-Chlorobenzenesulfonamide	424
13.11.4	General Procedures of Aza-MBH Reactions Involving Aliphatic Imines	424
13.11.5	Typical Procedures for 25a and Benzoic Acid-Catalyzed Aza-MBH Reaction of <i>N</i> -Sulfonated Imine with MVK	424
13.11.6	Typical Procedures for Trifunctional Phosphine 27-Catalyzed Aza-MBH Reaction of <i>N</i> -Tosylimines with MVK	424
13.11.7	General Procedures for the Synthesis of Enantiomerically Enriched Aza-MBH-Type Adducts Catalyzed by Chiral Sulfide 29	425
13.11.8	General Procedures for the Removal of <i>N</i> - <i>p</i> -Toluenesulfinyl Group	425
13.11.9	General Procedures for the Removal of <i>N</i> -Tosyl Group	425
13.11.9.1	Reduction of the Aza-MBH Reaction Product with LiAlH ₄	425
13.11.9.2	Boc-Protection	426
13.11.9.3	Detosylation	426
13.12	Summary and Outlook	426
	References	428
14	Biocatalytic Routes to Nonracemic Chiral Amines	431
	<i>Nicholas J. Turner and Matthew D. Truppo</i>	
14.1	Introduction	431
14.2	Kinetic Resolution of Racemic Amines	432
14.2.1	Hydrolytic Enzymes	432
14.2.2	Transaminases	441
14.2.3	Amine Oxidases	443
14.3	DKR and Deracemization of Amines	444

14.3.1	DKR Using Hydrolytic Enzymes and Racemization Catalysts	444
14.3.2	Deracemization Reactions Using Amine Oxidases	448
14.4	Asymmetric Synthesis of Amines Using Transaminases	450
14.5	Conclusions and Future Perspectives	455
	References	457

Appendix: Solution		461
---------------------------	--	-----

Index	479
--------------	-----