Classical Topics in Discrete Geometry

Contents

PrefaceVII			
Pa	rt I	Classical Topics Revisited	
1	Sph	ere Packings	3
	1.1	Kissing Numbers of Spheres	3
	1.2	One-Sided Kissing Numbers of Spheres	5
	1.3	On the Contact Numbers of Finite Sphere Packings	6
	1.4	Lower Bounds for the (Surface) Volume of Voronoi Cells in	
		Sphere Packings	7
	1.5	On the Density of Sphere Packings in Spherical Containers	12
	1.6	Upper Bounds on Sphere Packings in High Dimensions	13
	1.7	Uniform Stability of Sphere Packings	15
2	Fin	ite Packings by Translates of Convex Bodies	17
	2.1	Hadwiger Numbers of Convex Bodies	17
	2.2	One-Sided Hadwiger Numbers of Convex Bodies	18
	2.3	Touching Numbers of Convex Bodies	19
	2.4	On the Number of Touching Pairs in Finite Packings	20
3	Cov	verings by Homothetic Bodies - Illumination and	
		ated Topics	23
	3.1	The Illumination Conjecture	23
	3.2	Equivalent Formulations	24
	3.3	The Illumination Conjecture in Dimension Three	24
	3.4	The Illumination Conjecture in High Dimensions	25
	3.5	On the X-Ray Number of Convex Bodies	28
	3.6	The Successive Illumination Numbers of Convex Bodies	29
	3.7	The Illumination and Covering Parameters of Convex Bodies .	
	3.8	On the Vertex Index of Convex Bodies	32

v	Contout
X	Contents

4	Coverings by Planks and Cylinders			
	4.1	Plank Theorems	35	
	4.2	Covering Convex Bodies by Cylinders	37	
	4.3	Covering Lattice Points by Hyperplanes	39	
	4.4	On Some Strengthenings of the Plank Theorems of Ball and		
		Bang	41	
	4.5	On Partial Coverings by Planks: Bang's Theorem Revisited	43	
5	On	the Volume of Finite Arrangements of Spheres	47	
	5.1	The Conjecture of Kneser and Poulsen	47	
	5.2	The Kneser–Poulsen Conjecture for Continuous Contractions $$.	48	
	5.3	The Kneser-Poulsen Conjecture in the Plane	49	
	5.4	Non-Euclidean Kneser-Poulsen-Type Results	51	
	5.5	Alexander's Conjecture	53	
	5.6	Densest Finite Sphere Packings	54	
6		l-Polyhedra as Intersections of Congruent Balls	57	
	6.1	Disk-Polygons and Ball-Polyhedra	57	
	6.2	Shortest Billiard Trajectories in Disk-Polygons	57	
	6.3	Blaschke-Lebesgue-Type Theorems for Disk-Polygons	59	
	6.4	On the Steinitz Problem for Ball-Polyhedra	61	
	6.5	On Global Rigidity of Ball-Polyhedra	62	
	6.6	Separation and Support for Spindle Convex Sets	63	
	6.7	Carathéodory- and Steinitz-Type Results	65	
	6.8	Illumination of Ball-Polyhedra	65	
	6.9	The Euler-Poincaré Formula for Ball-Polyhedra	67	
— Pai	rt II	Selected Proofs		
	<u> </u>			
7		ected Proofs on Sphere Packings	71	
	7.1	Proof of Theorem 1.3.5	71	
		7.1.1 A proof by estimating the surface area of unions of balls	71	
		7.1.2 On the densest packing of congruent spherical caps of		
		special radius	73	
	7.2	Proof of Theorem 1.4.7	73	
		7.2.1 The Voronoi star of a Voronoi cell in unit ball packings	73	
		7.2.2 Estimating the volume of a Voronoi star from below	74	
	7.3	Proof of Theorem 1.4.8	75	
		7.3.1 Basic metric properties of Voronoi cells in unit ball		
		packings	75	
		7.3.2 Wedges of types I, II, and III, and truncated wedges	- ^	
		of types I, and II	76	
		7.3.3 The lemma of comparison and a characterization of		
		regular polytopes	79	

			Contents	ΧI		
		7.3.4	Volume formulas for (truncated) wedges	. 80		
			The integral representation of surface density in	. 00		
			(truncated) wedges	. 81		
			Truncation of wedges increases the surface density			
		7.3.7	Maximum surface density in truncated wedges of type l	85		
		7.3.8	An upper bound for the surface density in truncated			
			wedges of type II			
			The overall estimate of surface density in Voronoi cells			
	7.4		of Theorem 1.7.3			
		7.4.1	The signed volume of convex polytopes			
		7.4.2	The volume force of convex polytopes			
		7.4.3	Critical volume condition			
		7.4.4	Strictly locally volume expanding convex polytopes From critical volume condition and infinitesimal	. 92		
		7.4.5	rigidity to uniform stability of sphere packings	. 94		
			rigidity to uniform stability of sphere packings	/		
8	Sele	cted F	Proofs on Finite Packings of Translates of			
	Con	vex B	odies	. 95		
	8.1	Proof	of Theorem 2.2.1	. 95		
		8.1.1	Monotonicity of a special integral function			
		8.1.2	A proof by slicing via the Brunn–Minkowski inequality			
	8.2	Proof	of Theorem 2.4.3	. 98		
9	Solo	ctad F	Proofs on Illumination and Related Topics	101		
J	9.1		of Corollary 3.4.2 Using Rogers' Classical Theorem on			
	0.1		mical Coverings	. 101		
	9.2		of Theorem 3.5.2 via the Gauss Map			
	9.3		of Theorem 3.5.3 Using Antipodal Spherical Codes of			
			Covering Radii			
	9.4	Proofs	of Theorem 3.8.1 and Theorem 3.8.3			
		9.4.1	From the Banach-Mazur distance to the vertex index	106		
		9.4.2	Calculating the vertex index of Euclidean balls in			
			dimensions 2 and 3	107		
		9.4.3	A lower bound for the vertex index using the			
			Blaschke-Santaló inequality and an inequality of Ball	119		
		0.4.4	and Pajor	112		
		9.4.4	An upper bound for the vertex index using a theorem of Rudelson	113		
			of Rudelson	110		
10	Selected Proofs on Coverings by Planks and Cylinders1					
		Proof	of Theorem 4.1.7	115		
			On coverings of convex bodies by two planks	115		
			A proof of the affine plank conjecture of Bang for			
			non-overlapping cuts			
	10.2	Proof	of Theorem 4.2.2	117		

	10.2.1 Covering ellipsoids by 1-codimensional cylinders 11' 10.2.2 Covering convex bodies by cylinders of given
	codimension118
	10.3 Proof of Theorem 4.5.2
	10.4 Proof of Theorem 4.5.8
1	Selected Proofs on the Kneser-Poulsen Conjecture 123
	11.1 Proof of Theorem 5.3.2 on the Monotonicity of Weighted
	Surface Volume
	Two Volumes
	11.3 Proof of Theorem 5.3.4 - the Leapfrog Lemma
	11.4 Proof of Theorem 5.4.1
	11.4.1 The spherical leapfrog lemma
	11.4.2 Smooth contractions via Schläfli's differential formula 127
	11.4.3 Relating higher-dimensional spherical volumes to
	lower-dimensional ones
	11.4.4 Putting pieces together
	11.5 Proof of Theorem 5.4.6
	11.5.1 Monotonicity of the volume of hyperbolic simplices 130
	11.5.2 From Andreev's theorem to smooth one-parameter
	family of hyperbolic polyhedra133
12	Selected Proofs on Ball-Polyhedra135
	12.1 Proof of Theorem 6.2.1
	12.1.1 Finite sets that cannot be translated into the interior
	of a convex body
	12.1.2 From generalized billiard trajectories to shortest ones137
	12.2 Proofs of Theorems 6.6.1, 6.6.3, and 6.6.4
	12.2.1 Strict separation by spheres of radii at most one
	12.2.2 Characterizing spindle convex sets
	12.2.3 Separating spindle convex sets
	12.3 Proof of Theorem 6.7.1
	12.3.1 On the boundary of spindle convex hulls in terms of
	supporting spheres
	12.3.2 From the spherical Carathéodory theorem to an
	analogue for spindle convex hulls
	12.4 Proof of Theorem 6.8.3
	12.4.1 On the boundary of spindle convex hulls in terms of
	normal images
	12.4.2 On the Euclidean diameter of spindle convex hulls and
	normal images
	12.4.3 An upper bound for the illumination number based on
	a probabilistic approach

	12.4.4 Schramm's lower bound for the proper measure of	
	polars of sets of given diameter in spherical space	145
	12.4.5 An upper bound for the number of sets of given	
	diameter that are needed to cover spherical space	. 147
	12.4.6 The final upper bound for the illumination number	. 148
12.5	Proof of Theorem 6.9.1	. 148
	12.5.1 The CW-decomposition of the boundary of a standard	
	ball-polyhedron	. 148
	12.5.2 On the number of generating balls of a standard	
	ball-polyhedron	. 149
	12.5.3 Basic properties of face lattices of standard	
	ball-polyhedra	. 150
Referen	COS	153