Chapman & Hall/CRC FINANCIAL MATHEMATICS SERIES

Monte Carlo Methods and Models in Finance and Insurance

Ralf Korn Elke Korn Gerald Kroisandt

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business A CHAPMAN & HALL BOOK

Contents

Li	List of Algorithms			
1	Intr	oducti	ion and User Guide	1
	1.1	Introd	luction and concept	1
	1.2	Conte	nts	2
	1.3	How t	o use this book	3
	1.4	Furthe	er literature	3
	1.5	Ackno	wledgments	4
2	Gen	eratin	g Random Numbers	5
	2.1	Introd	luction	5
		2.1.1	How do we get random numbers?	5
		2.1.2	Quality criteria for RNGs	6
		2.1.3	Technical terms	8
	2.2	Exam	ples of random number generators	8
		2.2.1	Linear congruential generators	8
		2.2.2	Multiple recursive generators	12
		2.2.3	Combined generators	15
		2.2.4	Lagged Fibonacci generators	16
		2.2.5	\mathbb{F}_2 -linear generators	17
		2.2.6	Nonlinear RNGs	22
		2.2.7	More random number generators	24
		2.2.8	Improving RNGs	24
	2.3	Testin	g and analyzing RNGs	25
		2.3.1	Analyzing the lattice structure	25
		2.3.2	Equidistribution	26
		2.3.3	Diffusion capacity	27
		2.3.4	Statistical tests	27
	2.4	Gener	ating random numbers with general distributions	31
		2.4.1	Inversion method	31
		2.4.2	Acceptance-rejection method	33
	2.5	Select	ed distributions	36
		2.5.1	Generating normally distributed random numbers	36
		2.5.2	Generating beta-distributed RNs	38
		2.5.3	Generating Weibull-distributed RNs	38
		2.5.4	Generating gamma-distributed RNs	39
		2.5.5	Generating chi-square-distributed RNs	42

	2.6	6 Multivariate random variables				
		2.6.1	Multivariate normals	43		
		2.6.2	Remark: Copulas	44		
		2.6.3	Sampling from conditional distributions	44		
	2.7	Quasi	random sequences as a substitute for random sequences	45		
		2.7.1	Halton sequences	47		
		2.7.2	Sobol sequences	48		
		2.7.3	Randomized quasi-Monte Carlo methods	49		
		2.7.4	Hybrid Monte Carlo methods	50		
		2.7.5	Quasirandom sequences and transformations into			
			other random distributions	50		
	2.8	Parall	lelization techniques	51		
		2.8.1	Leap-frog method	51		
		2.8.2	Sequence splitting	52		
		2.8.3	Several RNGs	53		
		2.8.4	Independent sequences	53		
		2.8.5	Testing parallel RNGs	53		
3	\mathbf{The}	Mont	te Carlo Method: Basic Principles	55		
	3.1	Introd	luction	55		
	3.2	The st	trong law of large numbers and the Monte Carlo method	56		
		3.2.1	The strong law of large numbers	56		
		3.2.2	The crude Monte Carlo method	57		
		3.2.3	The Monte Carlo method: Some first applications	60		
	3.3	Impro	wing the speed of convergence of the Monte Carlo method:			
		Varia	nce reduction methods	65		
		3.3.1	Antithetic variates	66		
		3.3.2	Control variates	70		
		3.3.3	Stratified sampling	76		
		3.3.4	Variance reduction by conditional sampling	85		
		3.3.5	Importance sampling	87		
	3.4	Furth	er aspects of variance reduction methods	97		
		3.4.1	More methods \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	97		
		3.4.2	Application of the variance reduction methods	100		
4	Con	tinuo	15-Time Stochastic Processes: Continuous Paths	103		
-	4.1	Introd	luction	103		
	4 2	Stoch	astic processes and their paths: Basic definitions	103		
	4.3	The M	Agente Carlo method for stochastic processes	107		
	1.0	431	Monte Carlo and stochastic processes	107		
		432	Simulating naths of stochastic processes: Reside	102		
		433	Variance reduction for stochastic processes	110		
	44	Brown	variance reduction for stochastic processes	111		
	1.1	441	Properties of Brownian motion	119		
		449	Weak convergence and Donsker's theorem	116		
		I.I.A	TTOM CONTERENCE AND DUBLES SUBULEIN	TTO		

		4.4.3 Brownian bridge	120
	45	Basics of Itô calculus	126
	1.0	4.5.1 The Itô integral	126
		4.5.2 The Itô formula	133
		4.5.3 Martingale representation and change of measure	135
	46	Stochastic differential equations	137
	1.0	4.6.1 Basic results on stochastic differential equations	137
		4.6.2 Linear stochastic differential equations	139
		4.6.3 The square-root stochastic differential equation	141
		4.6.4 The Feynman-Kac representation theorem	142
	17	Simulating solutions of stochastic differential equations	145
	4.1	4.7.1 Introduction and basic aspects	145
		4.7.1 Introduction and basic aspects	146
		4.7.2 Numerical schemes for stochastic differential equations	151
		4.7.5 Numerical schemes for stochastic differential equations	156
		4.7.4 Convergence of numerical schemes for SDES	150
		4.7.5 More numerical schemes for SDEs	169
		4.7.6 Efficiency of numerical schemes for SDEs	162
		4.7.7 Weak extrapolation methods	167
	4.0	4.7.8 The multilevel Monte Carlo method	107
	4.0	Which simulation methods for SDE should be chosen:	110
5	Sim	ulating Financial Models: Continuous Paths	175
0	5.1	Introduction	175
	5.2	Basics of stock price modelling	176
	5.3	A Black-Scholes type stock price framework	177
	0.0	5.3.1 An important special case: The Black-Scholes model	180
		5.3.2 Completeness of the market model	183
	54	Basic facts of ontions	184
	5.5	An introduction to option pricing	187
	0.0	5.5.1 A short history of option pricing	187
		5.5.2 Option pricing via the replication principle	187
		5.5.3 Dividends in the Black-Scholes setting	195
	56	Option pricing and the Monte Carlo method in the Black-	
	0.0	Scholes setting	196
		5.6.1 Path-independent European ontions	197
		5.6.2 Path dependent European options	199
		5.6.2 More evotic entions	210
			211
		5.6.4 Data proprocessing by moment matching methods	
	E '7	5.6.4 Data preprocessing by moment matching methods	213
	5.7	5.6.4 Data preprocessing by moment matching methods Weaknesses of the Black-Scholes model	213 213
	$\frac{5.7}{5.8}$	5.6.4 Data preprocessing by moment matching methods Weaknesses of the Black-Scholes model	213 216 210
	5.7 5.8	5.6.4 Data preprocessing by moment matching methods Weaknesses of the Black-Scholes model	213 216 219 221
	5.7 5.8 5.9	5.6.4 Data preprocessing by moment matching methods Weaknesses of the Black-Scholes model	213 216 219 221 222
	5.7 5.8 5.9 5.10	5.6.4 Data preprocessing by moment matching methods Weaknesses of the Black-Scholes model Local volatility models and the CEV model	213 216 219 221 222 224
	5.7 5.8 5.9 5.10 5.11	5.6.4 Data preprocessing by moment matching methods Weaknesses of the Black-Scholes model Local volatility models and the CEV model	213 216 219 221 222 224 224

	5.11.2 The Heath-Platen estimator in the Heston model	232
5.12	2 Variance reduction principles in non-Black-Scholes models .	238
5.13	Stochastic local volatility models	239
5.14	Monte Carlo option pricing: American and Bermudan options	240
	5.14.1 The Longstaff-Schwartz algorithm and regression-based	
	variants for pricing Bermudan options	243
	5.14.2 Upper price bounds by dual methods	250
5.15	Monte Carlo calculation of option price sensitivities	257
	5.15.1 The role of the price sensitivities	257
	5.15.2 Finite difference simulation	258
	5.15.3 The pathwise differentiation method	261
	5.15.4 The likelihood ratio method	264
	5.15.5 Combining the pathwise differentiation and the	
	likelihood ratio methods by localization	265
	5.15.6 Numerical testing in the Black-Scholes setting	267
5.16	Basics of interest rate modelling	269
	5.16.1 Different notions of interest rates	270
	5.16.2 Some popular interest rate products	271
5.17	The short rate approach to interest rate modelling	275
	5.17.1 Change of numeraire and option pricing: The forward	
	measure	276
	5.17.2 The Vasicek model	278
	5.17.3 The Cox-Ingersoll-Ross (CIR) model	281
	5.17.4 Affine linear short rate models \ldots	283
	5.17.5 Perfect calibration: Deterministic shifts and the Hull-	
	White approach	283
	5.17.6 Log-normal models and further short rate models	287
5.18	The forward rate approach to interest rate modelling	288
	5.18.1 The continuous-time Ho-Lee model	289
	5.18.2 The Cheyette model	290
5.19	LIBOR market models	293
	5.19.1 Log-normal forward-LIBOR modelling	294
	5.19.2 Relation between the swaptions and the cap market .	297
	5.19.3 Aspects of Monte Carlo path simulations of forward-	
	LIBOR rates and derivative pricing	299
	5.19.4 Monte Carlo pricing of Bermudan swaptions with a	
	parametric exercise boundary and further comments .	305
	5.19.5 Alternatives to log-normal forward-LIBOR models	308
Con	tinuous-Time Stochastia Processes, Discontinuous Data	
6 1	Introduction	309
6.2	Poisson processes and Poisson random measures. Definition	309
.	and simulation	910
	6.2.1 Stochastic integrals with respect to Poisson processor	01U 010
6.3	Jump-diffusions: Basics properties and simulation	312 215
0.0	• and simulations. Dasies, properties, and simulation	315

6

		6.3.1	Simulating Gauss-Poisson jump-diffusions	317	
	~ .	0.3.2	Euler-Maruyama scheme for jump-diffusions	319	
	6.4	Levy I	processes: Properties and examples	320	
		6.4.1	Definition and properties of Levy processes	320	
	~ ~	6.4.2	Examples of Lévy processes	324	
	6.5	Simula	ation of Lévy processes	329	
		6.5.1	Exact simulation and time discretization	329	
		6.5.2	The Euler-Maruyama scheme for Lévy processes	330	
		6.5.3	Small jump approximation	331	
		6.5.4	Simulation via series representation	333	
7	Sim	ulatin	g Financial Models: Discontinuous Paths	335	
	7.1	Introd		335	
	7.2	Merto	n's jump-diffusion model and stochastic volatility models		
		with j	umps	335	
		7.2.1	Merton's jump-diffusion setting	335	
		7.2.2	Jump-diffusion with double exponential jumps	339	
		7.2.3	Stochastic volatility models with jumps	340	
	7.3	Specia	al Lévy models and their simulation	340	
		7.3.1	The Esscher transform	341	
		7.3.2	The hyperbolic Lévy model	342	
		7.3.3	The variance gamma model	344	
		7.3.4	Normal inverse Gaussian processes	352	
		7.3.5	Further aspects of Lévy type models	354	
8	Simulating Actuarial Models 35				
	8.1	Introd	luction	357	
	8.2	Premi	um principles and risk measures	357	
		8.2.1	Properties and examples of premium principles	358	
		8.2.2	Monte Carlo simulation of premium principles	362	
		8.2.3	Properties and examples of risk measures	362	
		8.2.4	Connection between premium principles and risk	265	
		0 N K	Monto Carlo simulation of risk measures	366	
	09	0.2.0 Somo	applications of Monte Carlo methods in life insurance	377	
	8.3	Some	Mentality Definitions and closed models	270	
		8.3.1	Mortanty: Demitions and classical models	270	
		8.3.2	Dynamic mortanty models	019 202	
		8.3.3	Life insurance contracts and premium calculation	000 205	
		ర. చ .4	Pricing longevity products by Monte Carlo simulation	000 207	
	o 4	8.3.5 C'	Fremium reserves and Intele's differential equation.	301 200	
	8.4	Simul	ating dependent risks with copulas	390	
		8.4.1	Dennition and basic properties	390	
		8.4.2	Examples and simulation of copulas	393	
	o -	8.4.3	Application in actuarial models	402	
	8.5	Nonlii	te insurance	403	

	8.5.1	The individual model	404
	8.5.2	The collective model	405
	8.5.3	Rare event simulation and heavy-tailed distributions .	410
	8.5.4	Dependent claims: An example with copulas	413
8.6	Marko	ov chain Monte Carlo and Bayesian estimation	415
	8.6.1	Basic properties of Markov chains	415
	8.6.2	Simulation of Markov chains	419
	8.6.3	Markov chain Monte Carlo methods	420
	8.6.4	MCMC methods and Bayesian estimation	427
	8.6.5	Examples of MCMC methods and Bayesian estimation	
		in actuarial mathematics	429
8.7	Asset-	liability management and Solvency II	433
	8.7.1	Solvency II	433
	8.7.2	Asset-liability management (ALM)	435
References			
10010101	1003		44 1
Index			459