How and Why Species Multiply

The Radiation of Darwin's Finches

Peter R. Grant and B. Rosemary Grant

PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD

Contents

List of Illustrations	xi
List of Tables	XU
Preface	xvii
ONE	
The Biodiversity Problem and Darwin's Finches	1
Biodiversity	1
The Choice of Organisms	2
Darwin's Finches	3
Diversity of Darwin's Finch Species	5
Species and Populations	8
Overview of the Book	11
TWO	
Origins and History	13
Introduction	13
Phylogeny	14
Ancestors	16
The Time of Arrival	16
Colonization	17
The Ecological Theater	18
A Change of Scenery	21
The Evolutionary Play	22
Recent History	22
Summary	25
THREE	
Modes of Speciation	26
The Formation of New Species	26
Two Groups from One	27
Divergence in Allopatry	28

29 30 31 33 33
31 33
33
33
35
35
35
36
38
39
39
42
42
44
45
10
46
46
47
50
52
54
55
58
58
59
59
62
63
65
65
05

Patterns of Coexistence	66
Diets Inferred from Beaks	67
Interpreting the Patterns	67
Character Displacement and Release	68
Character Displacement Observed	68
THE COMPETITIVE ROLE OF G. Magnirostris	69
Selection under Contrasting Conditions	73
Evolution of Character Displacement	73
Summary	75
SEVEN	
Reproductive Isolation	76
Pre-mating Barrier to Interbreeding	76
Factors Involved in the Discrimination	
between Species	76
Beaks	77
Song	77
Learning	79
Song Differences between Species	80
Song Divergence in Allopatry	81
Adaptation to Habitat	83
Change of Songs as a Consequence of	
Morphological Divergence	84
The Role of Chance	86
Simulating Secondary Contact	88
Summary	91
EIGHT	
Hybridization	92
Introduction	92
Hybridization	92
Why Hybridization Occurs	93
When Hybridization Does Not Occur	96
Hybrid Fitness	97
Introgression on Daphne Major	100
Introgression in the Archipelago	103
Reinforcement	103
Reproductive Character Displacement	105

Evolutionary Significance of Introgression	106
Summary	107

NINE

Species and Speciation	108
Introduction	108
From Process to Product: What Is a Species?	109
A Working Definition	110
How Many Species of Darwin's Finches?	111
Certhidea olivacea: One Species or Two?	112
Geospiza difficilis: One Species or Three?	113

From Product Back to Process	114
Fission and Fusion	116
Summary	119

TEN

Reconstructing the Radiation of Darwin's Finches	120
Introduction	120
The Shape of the Radiation	121
Speciation and Extinction	123
Speciation	125
Extinction	126
Implications for Phylogeny	127
Adaptive Landscape	128
A Pattern of Ecological Segregation	133
Specialization	134
The Buildup of Complex Communities	134
Summary	135

ELEVEN

Facilitators of Adaptive Radiation	137
Introduction	137
Environmental Opportunity	138
Geographical Suitability	139
Ecological Opportunity	140
High Diversification Potential	140
Behavioral Flexibility	142
2	142

· · · · · · · ·	
Introgressive Hybridization	145
Hybridization and Animal Breeding	146
Environmental Conditions Conducive to Introgression	146
Finches versus Mockingbirds	148
Summary	150
TWELVE	
The Life History of Adaptive Radiations	152
Introduction	152
The First Stage of Adaptive Radiation	153
The Second Stage of Adaptive Radiation	154
Haldane's Rule	157
The Third Stage of Adaptive Radiation	158
Synthesis	160
Summary	162
THIRTEEN	
Summary of the Darwin's Finch Radiation	163
What Happened and Why	163
What Is Missing?	165

What Is Missing?	165
Epilogue	166

168
175
201
210

Illustrations

Color Plates (following page 122)

- 1. Relationships among Darwin's finch species based on microsatellite DNA
- 2. Darwin's finch species
- 3. *Melanospiza richardsoni, Tiaris olivacea*, and *Certhidea olivacea*
- 4. Warbler finches from four islands
- 5. Volcanic activity on Isabela island; and Daphne Major island
- 6. Cocos island and its finch
- 7. Four Galápagos habitats at different elevations
- 8. Capturing, measuring, and banding birds
- 9. Measurements of birds
- 10. The four species of Darwin's finches on Daphne Major island
- 11. Large tree finches, differing in beak size and shape on two islands
- 12. Habitats of the sharp-beaked ground finch, Geospiza difficilis
- 13. *G. difficilis* on a high island (Pinta) and a low island (Genovesa)
- 14. Unusual feeding habits of the sharp-beaked ground finch, *Geospiza difficilis*
- 15. Plants that produce small seeds
- 16. Feeding of medium ground finches on Daphne Major island
- 17. Effects of a drought on Daphne Major vegetation
- 18. Tribulus cistoides
- 19. Effects of El Niño on Daphne Major vegetation
- 20. The large cactus finch in the presence and absence of the large ground finch
- 21. Feeding of large ground finches on Daphne Major island
- 22. Cactus fruits exploited by cactus finches
- 23. Cactus feeding by cactus finches on Daphne Major island

ILLUSTRATIONS

24.	Character displacement of <i>G. fortis</i> in the presence of	
	G. magnirostris	
25.	Dead finches on Daphne Major island	
	Tests of discrimination by appearance and by song	
	A probable hybrid on Genovesa	
	Hybrids and backcrosses on Daphne Major island	
	Tool-using woodpecker finch, and a tick-eating small ground finch	
30.	Four allopatric species of Galápagos mockingbirds	
	The vangids of Madagascar and the honeycreeper	
	finches of Hawaii	
Figı	ures	
	Map of the Galápagos islands	4
	Adaptive radiation of Darwin's finches	6
1.3	Morphological variation of Geospiza fuliginosa, G. fortis,	
	and G. magnirostris	10
2.1	Relationships among Darwin's finch species constructed	
	with microsatellite DNA	15
2.2	Increase in number of islands over the last 3 million years	19
2.3	Global climate change and Pacific temperatures over	
	the last 3 million years	20
2.4	Parallel increase in number of islands and number	
	of finch species	23
2.5	Altitudinal zonation of habitats	24
3.1	Allopatric speciation, in three stages	28
	Two versions of the founder effects model of speciation	37
4.2	Numbers of pairs of Geospiza magnirostris on	
	Daphne Major island	40
4.3	Inbreeding depression in the 1991 cohort of G. magnirostris	40
4.4	Changes in genetic diversity of G. magnirostris	41
4.5	Average beak size in the population of G. magnirostris	
	during fluctuations in population numbers	43
5.1	An analogy between beak shapes and pliers	48
5.2	Seed sizes that can be cracked in relation to beak depth	49
	Geospiza difficilis populations in the Galápagos archipelago	50
	Phylogeny of the sharp-beaked ground finch, Geospiza difficilis	51
	Annual rainfall on Daphne Major island	52

ILLUSTRATIONS

5.6	Changes in beak depth in the medium ground finch,	
	G. fortis, as a result of natural selection	53
5.7	The relationship between parents and offspring in beak depth	54
5.8	Evolutionary change in beak depth in the population	
	of Geospiza fortis	56
5.9	Morphological changes in the populations of Geospiza fortis	
	and G. scandens	57
5.10	Schematic diagram of beak development	60
	Different expression of the Bmp4 and CaM genes in species	
	of ground finches	61
5.12	Summary of effects of two genes, <i>Bmp4</i> and <i>CaM</i> ,	
	on developing finch beaks	63
6.1	The long-term morphological trajectory of G. fortis	
	on Daphne Major island	70
6.2	Numbers of G. magnirostris and G. fortis before, during,	
	and after a crash	70
6.3	Diets of three ground finch species in three categories	
	of seed size	72
6.4	Observed evolutionary responses to natural selection in	
	G. fortis and G. scandens compared with predicted values	74
7.1	Discrimination by ground finch species between	
	stuffed specimens	78
7.2	Discrimination by male ground finches between local	
	conspecific and heterospecific song	79
7.3	A pedigree of songs sung by G. fortis males on	
	Daphne Major island	82
7.4	Lifetime constancy of the single song sung by G. fortis males	83
7.5	Similarity of G. scandens songs produced by father and son	84
7.6	Advertising songs of G. difficilis on Pinta, Wolf, Darwin,	
	and Genovesa	85
7.7	Similarity in the songs of different species	87
7.8	Discrimination by ground finch species between	
	residents and immigrants	89
7.9	The likelihood of a resident species breeding with an	
	immigrant in relation to the difference in their morphology	90
8.1	Miscopying of G. magnirostris songs by G. fortis on	
	Daphne Major island	95

8.2	Diets of ground finch species, hybrids, and two generations	
	of backcrosses	98
8.3	Change in the fate of hybrids on Daphne Major island	
	after the 1982–83 El Niño	99
8.4	Fitness of hybrids and backcrosses in relation	
	to the parental species	100
8.5	Backcrossing of G. fortis and G. scandens according	
	to paternal song type	101
8.6	Genetic and morphological convergence of G. fortis	
	and G. scandens	102
8.7	Introgressive hybridization between closely related pairs of	
	ground finches and tree finches in the Galápagos archipelago	104
8.8	Increase in microsatellite heterozygosity and beak shape	
	variance in G. scandens	106
9.1	A simple representation of speciation	109
9.2	Oscillating divergence and convergence during speciation	116
9.3	Beak sizes of G. fortis and G. magnirostris on Santa Cruz,	
	San Cristóbal and Marchena	118
10.1	Morphological diversity among Darwin's finch species	122
10.2	Accumulation of species through time.	124
10.3	Phylogeny with hybridization and extinction	129
10.4	An adaptive landscape	130
10.5	An adaptive landscape for finches	132
11.1	Morphological divergence among relatives of	
	Darwin's finches	143
11.2	Changes in the center of the Galápagos archipelago in the	
	last 22,000 years	147
12.1	A model of the evolution of genetic incompatibilities	
	as a function of time	156

Tables

1.1	Darwin's finch species	5
1.2	Finch distributions on the 18 major islands	7
6.1	Coefficients associated with two episodes of natural selection	71