The Econometric Modelling of Financial Time Series

Third edition

Terence C. Mills

Professor of Applied Statistics and Econometrics Department of Economics Loughborough University

Raphael N. Markellos

Senior Lecturer in Quantitative Finance Department of Management Science and Technology Athens University of Economics and Business

Contents

	List of figures	page viii
	List of tables	xi
	Preface to the third edition	xiii
	Introduction	1
	Univariate linear stochastic models: basic concepts	9
2.1	Stochastic processes, ergodicity and stationarity	9
2.2	Stochastic difference equations	12
2.3	ARMA processes	14
2.4	Linear stochastic processes	28
2.5	ARMA model building	28
2.6	Non-stationary processes and ARIMA models	37
2.7	ARIMA modelling	48
2.8	Seasonal ARIMA modelling	53
2.9	Forecasting using ARIMA models	57
	Univariate linear stochastic models: testing for unit roots and	
	alternative trend specifications	65
3.1	Determining the order of integration of a time series	67
3.2	Testing for a unit root	69
3.3	Trend stationarity versus difference stationarity	85
3.4	Other approaches to testing for unit roots	89
3.5	Testing for more than one unit root	96
3.6	Segmented trends, structural breaks and smooth transitions	98
3.7	Stochastic unit root processes	105
	Univariate linear stochastic models: further topics	111
4.1	Decomposing time series: unobserved component models and signal extraction	111

4.2	Measures of persistence and trend reversion	124
4.3	Fractional integration and long memory processes	134
	Univariate non-linear stochastic models: martingales, random	
	walks and modelling volatility	151
5.1	Martingales, random walks and non-linearity	151
5.2	Testing the random walk hypothesis	153
5.3	Measures of volatility	157
5.4	Stochastic volatility	166
5.5	ARCH processes	174
5.6	Some models related to ARCH	199
5.7	The forecasting performance of alternative volatility models	204
	Univariate non-linear stochastic models: further models and	
	testing procedures	206
6.1	Bilinear and related models	207
6.2	Regime-switching models: Markov chains and smooth	
	transition autoregressions	216
6.3	Non-parametric and neural network models	223
6.4	Non-linear dynamics and chaos	232
6.5	Testing for non-linearity	235
	Modelling return distributions	247
7.1	Descriptive analysis of returns series	248
7.2	Two models for returns distributions	249
7.3	Determining the tail shape of a returns distribution	254
7.4	Empirical evidence on tail indices	257
7.5	Testing for covariance stationarity	261
7.6	Modelling the central part of returns distributions	264
7.7	Data-analytic modelling of skewness and kurtosis	266
7.8	Distributional properties of absolute returns	268
7.9	Summary and further extensions	271
	Regression techniques for non-integrated financial time series	274
8.1	Regression models	274
8.2	ARCH-in-mean regression models	287
8.3	Misspecification testing	293
8.4	Robust estimation	304

	8.5	The multivariate linear regression model	307
	8.6	Vector autoregressions	309
	8.7	Variance decompositions, innovation accounting and	
		structural VARs	316
	8.8	Vector ARMA models	319
	8.9	Multivariate GARCH models	323
9		Regression techniques for integrated financial time series	329
	9.1	Spurious regression	330
	9.2	Cointegrated processes	338
	9.3	Testing for cointegration in regression	346
	9.4	Estimating cointegrating regressions	352
	9.5	VARs with integrated variables	356
	9.6	Causality testing in VECMs	373
	9.7	Impulse response asymptotics in non-stationary VARs	375
	9.8	Testing for a single long-run relationship	377
	9.9	Common trends and cycles	383
10		Further topics in the analysis of integrated financial time series	388
	10.1	Present value models, excess volatility and cointegration	388
	10.2	Generalisations and extensions of cointegration and error	
		correction models	401
		Data appendix	411
		References	412
		Index	446

Figures

2.1	ACFs and simulations of AR(1) processes	page 15
2.2	Simulations of MA(1) processes	18
2.3	ACFs of various AR(2) processes	20
2.4	Simulations of various AR(2) processes	22
2.5	Simulations of MA(2) processes	25
2.6	Real S&P returns (annual 1872–2006)	31
2.7	UK interest rate spread (monthly March 1952–December 2005)	32
2.8	Linear and quadratic trends	41
2.9	Explosive AR(1) model	42
2.10	Random walks	43
2.11	'Second difference' model	46
2.12	'Second difference with drift' model	47
2.13	Dollar/sterling exchange rate (daily January 1993-December 2005)	50
2.14	FTA All Share index (monthly 1965–2005)	51
2.15	Autocorrelation function of the absolute returns of the GIASE	
	(intradaily, 1 June–10 September 1998)	54
2.16	Autocorrelation function of the seasonally differenced absolute	
	returns of the GIASE (intradaily, 1 June–10 September 1998)	55
2.17	Nord Pool spot electricity prices and returns (daily averages,	
	22 March 2002–3 December 2004)	56
3.1	Simulated limiting distribution of $Tig(\hat{\phi}_T - 1 ig)$	75
3.2	Simulated limiting distribution of τ	76
3.3	Simulated limiting distribution of $ au_{\mu}$	77
3.4	FTA All Share index dividend yield (monthly 1965–2005)	84
3.5	Simulated limiting distribution of $ au_{ au}$	86
3.6	UK interest rates (monthly 1952–2005)	97
3.7	Logarithms of the nominal S&P 500 index (1871–2006) with a	
	smooth transition trend superimposed	103
3.8	Nikkei 225 index prices and seven-year Japanese government	
	bond yields (end of year 1914–2003)	108

3.9	Japanese equity premium (end of year 1914–2003)	109
4.1	Real UK Treasury bill rate decomposition (quarterly January	
	1952–September 2005)	123
4.2	Three-month US Treasury bills, secondary market rates	
	(monthly April 1954–February 2005)	133
4.3	ACFs of ARFIMA(0, d , 0) processes with $d = 0.5$ and $d = 0.75$	139
4.4	SACF of three-month US Treasury bills	149
4.5	Fractionally differenced $(d=0.88)$ three-month US Treasury	
	bills (monthly April 1954–February 2005)	149
5.1	Annualised realised volatility estimator for the DJI	163
5.2	Annualised realised volatility estimator versus return for the DJI	163
5.3	Dollar/sterling exchange rate 'volatility' (daily January	
	1993–December 2005)	173
5.4	Conditional standard deviations of the dollar sterling exchange	
	rate from the GARCH(1,1) model with GED errors	196
6.1	IBM common stock price (daily from 17 May 1961)	214
6.2	Dollar/sterling exchange rate (quarterly 1973–1996) and	
	probability of being in state 0	221
6.3	Twenty-year gilt yield differences (monthly 1952–2005)	222
6.4	Kernel and nearest-neighbour estimates of a cubic deterministic	
	trend process	227
6.5	VIX implied volatility index (daily January 1990–September 2005)	230
7.1	Distributional properties of two returns series	250
7.2	Tail shapes of return distributions	259
7.3	Cumulative sum of squares plots	263
7.4	'Upper-lower' symmetry plots	267
8.1	Accumulated generalised impulse response functions	324
8.2	Estimated dynamic hedge ratio for FTSE futures contracts	
	during 2003	328
9.1	Simulated frequency distribution of $\hat{\beta}_{1000}$	335
9.2	Simulated frequency distribution of the <i>t</i> -ratio of $\hat{\beta}_{1000}$	336
9.3	Simulated frequency distribution of the spurious regression R^2	336
9.4	Simulated frequency distribution of the spurious regression dw	337
9.5	Simulated frequency distribution of $\hat{\beta}_{1000}$ from the cointegrated	
	model with endogenous regressor	341
9.6	Simulated frequency distribution of the <i>t</i> -ratio on $\hat{\beta}_{1000}$ from the	
	cointegrated model with endogenous regressor	342
9.7	Simulated frequency distribution of the slope coefficient from	
	the stationary model with endogeneity	342

9.8	Simulated frequency distribution of the slope coefficient from	
	the stationary model without endogeneity	343
9.9	Simulated frequency distribution of the <i>t</i> -ratio on \hat{eta}_{1000} from the	
	cointegrated model with exogenous regressor	344
9.10	Simulated frequency distribution of \hat{eta}_{1000} from the cointegrated	
	model with endogenous regressor and drift	345
9.11	Stock prices and the FTSE 100	351
9.12	LGEN relative to the FTSE 100	356
9.13	Estimated error corrections	370
9.14	Estimated impulse response functions	377
9.15	Impulse responses from the two market models	382
10.1	FTA All Share index: real prices and dividends (monthly	
	1965–2005)	396
10.2	UK interest rate spread (quarterly 1952-2005)	398
10.3	S&P dividend yield and scatterplot of prices and dividends	
	(annual 1871–2002)	408

Tables

2.1	ACF of real S&P 500 returns and accompanying statistics	page 30
2.2	SACF and SPACF of the UK spread	32
2.3	SACF and SPACF of FTA All Share nominal returns	34
2.4	Model selection criteria for nominal returns	36
2.5	SACF and SPACF of the first difference of the UK spread	49
2.6	SACF and SPACF of the first difference of the FTA All Share inde	ex 52
2.7	SACF and SPACF of Nord Pool spot electricity price returns	55
4.1	Variance ratio test statistics for UK stock prices	
	(monthly 1965–2002)	130
4.2	Interest rate model parameter estimates	134
5.1	Empirical estimates of the leveraged ARSV(1) model for the DJI	174
5.2	GARCH(1,1) estimates for the dollar/sterling exchange rate	196
6.1	Linear and non-linear models for the VIX	231
6.2	BDS statistics for twenty-year gilts	243
6.3	Within-sample and forecasting performance of three models	
	for $\Delta r20$	244
6.4	BDS statistics for the VIX residuals	245
7.1	Descriptive statistics on returns distributions	249
7.2	Point estimates of tail indices	258
7.3	Tail index stability tests	260
7.4	Lower tail probabilities	260
7.5	Cumulative sum of squares tests of covariance stationarity	264
7.6	Estimates of characteristic exponents from the central part of	
	distributions	266
7.7	Properties of marginal return distributions	270
8.1	Estimates of the CAPM regression (7.13)	301
8.2	Estimates of the FTA All Share index regression (8.14)	303
8.3	Robust estimates of the CAPM regression	306
8.4	BIC values and LR statistics for determining the order of the	
	VAR in example 8.8	321

8.5	Summary statistics for the VAR(2) of example 8.8	321
8.6	Granger causality tests	322
8.7	Variance decompositions	323
9.1	Market model cointegration test statistics	350
9.2	Cointegrating rank test statistics	366
9.3	Unrestricted estimates of VECM(2, 1, 2) model	372
9.4	Granger causality tests using LA-VAR estimation	375
9.5	Common cycle tests	387