Sources in the Development of Mathematics

Infinite Series and Products from the Fifteenth to the Twenty-first Century

RANJAN ROY Beloit College

Contents

Prefe	ace		<i>page</i> xvii
1	Powe	r Series in Fifteenth-Century Kerala	1
	1.1	Preliminary Remarks	1
	1.2	Transformation of Series	4
	1.3	Jyesthadeva on Sums of Powers	5
	1.4	Arctangent Series in the Yuktibhasa	7
	1.5	Derivation of the Sine Series in the Yuktibhasa	8
	1.6	Continued Fractions	10
	1.7	Exercises	12
	1.8	Notes on the Literature	14
2	Sums	of Powers of Integers	16
	2.1	Preliminary Remarks	16
	2.2	Johann Faulhaber and Sums of Powers	19
	2.3	Jakob Bernoulli's Polynomials	20
	2.4	Proof of Bernoulli's Formula	24
	2.5	Exercises	25
	2.6	Notes on the Literature	26
3	Infinit	te Product of Wallis	28
	3.1	Preliminary Remarks	28
	3.2	Wallis's Infinite Product for π	32
	3.3	Brouncker and Infinite Continued Fractions	33
	3.4	Stieltjes: Probability Integral	36
	3.5	Euler: Series and Continued Fractions	38
	3.6	Euler: Products and Continued Fractions	40
	3.7	Euler: Continued Fractions and Integrals	43
	3.8	Sylvester: A Difference Equation and Euler's Continued Fractio	on 45
	3.9	Euler: Riccati's Equation and Continued Fractions	46
	3.10	Exercises	48
	3.11	Notes on the Literature	50

4	The I	Binomial Theorem	51
	4.1	Preliminary Remarks	51
	4.2	Landen's Derivation of the Binomial Theorem	57
	4.3	Euler's Proof for Rational Indices	58
	4.4	Cauchy: Proof of the Binomial Theorem for Real Exponents	60
	4.5	Abel's Theorem on Continuity	62
	4.6	Harkness and Morley's Proof of the Binomial Theorem	66
	4.7	Exercises	67
	4.8	Notes on the Literature	69
5	The l	Rectification of Curves	71
	5.1	Preliminary Remarks	71
	5.2	Descartes's Method of Finding the Normal	73
	5.3	Hudde's Rule for a Double Root	74
	5.4	Van Heuraet's Letter on Rectification	75
	5.5	Newton's Rectification of a Curve	76
	5.6	Leibniz's Derivation of the Arc Length	77
	5.7	Exercises	78
	5.8	Notes on the Literature	79
6	Inequ	alities	81
	6.1	Preliminary Remarks	81
	6.2	Harriot's Proof of the Arithmetic and Geometric Means Inequality	87
	6.3	Maclaurin's Inequalities	88
	6.4	Jensen's Inequality	89
	6.5	Reisz's Proof of Minkowski's Inequality	90
	6.6	Exercises	91
	6.7	Notes on the Literature	96
7	Geon	netric Calculus	97
	7.1	Preliminary Remarks	97
	7.2	Pascal's Evaluation of $\int \sin x dx$	100
	7.3	Gregory's Evaluation of a Beta Integral	101
	7.4	Gregory's Evaluation of $\int \sec\theta d\theta$	104
	7.5	Barrow's Evaluation of $\int \sec\theta d\theta$	106
	7.6	Barrow and the Integral $\int \sqrt{x^2 + a^2} dx$	108
	7.7	Barrow's Proof of $\frac{d}{d\theta} \tan \theta = \sec^2 \theta$	110
	7.8	Barrow's Product Rule for Derivatives	111
	7.9	Barrow's Fundamental Theorem of Calculus	114
	7.10	Exercises	114
	7.11	Notes on the Literature	118
8	The C	Calculus of Newton and Leibniz	120
	8.1	Preliminary Remarks	120
	8.2	Newton's 1671 Calculus Text	123
	8.3	Leibniz: Differential Calculus	126

vi

	 8.4 Leibniz on the Catenary 8.5 Johann Bernoulli on the Catenary 8.6 Johann Bernoulli: The Brachistochrone 8.7 Newton's Solution to the Brachistochrone 8.8 Newton on the Radius of Curvature 8.9 Johann Bernoulli on the Radius of Curvature 8.10 Exercises 8.11 Notes on the Literature 	129 131 132 133 135 136 137
9	8.11Notes on the LiteratureDe Analysi per Aequationes Infinitas9.1Preliminary Remarks9.2Algebra of Infinite Series9.3Newton's Polygon9.4Newton on Differential Equations9.5Newton's Earliest Work on Series9.6De Moivre on Newton's Formula for $\sin n\theta$ 9.7Stirling's Proof of Newton's Formula9.8Zolotarev: Lagrange Inversion with Remainder9.9Exercises9.10Notes on the Literature	138 140 142 145 146 147 149 150 152 153 156
10	 Finite Differences: Interpolation and Quadrature 10.1 Preliminary Remarks 10.2 Newton: Divided Difference Interpolation 10.3 Gregory-Newton Interpolation Formula 10.4 Waring, Lagrange: Interpolation Formula 10.5 Cauchy, Jacobi: Lagrange Interpolation Formula 10.6 Newton on Approximate Quadrature 10.7 Hermite: Approximate Integration 10.8 Chebyshev on Numerical Integration 10.9 Exercises 10.10 Notes on the Literature 	158 158 163 165 165 166 168 170 172 173 175
11	 Series Transformation by Finite Differences 11.1 Preliminary Remarks 11.2 Newton's Transformation 11.3 Montmort's Transformation 11.4 Euler's Transformation Formula 11.5 Stirling's Transformation Formulas 11.6 Nicole's Examples of Sums 11.7 Stirling Numbers 11.8 Lagrange's Proof of Wilson's Theorem 11.9 Taylor's Summation by Parts 11.10 Exercises 11.11 Notes on the Literature 	176 176 181 182 184 187 190 191 194 195 196 199

12	The T	aylor Series	200
		Preliminary Remarks	200
		Gregory's Discovery of the Taylor Series	206
		Newton: An Iterated Integral as a Single Integral	209
		Bernoulli and Leibniz: A Form of the Taylor Series	210
	12.5	Taylor and Euler on the Taylor Series	211
	12.6	Lacroix on d'Alembert's Derivation of the Remainder	212
	12.7	Lagrange's Derivation of the Remainder Term	213
	12.8	Laplace's Derivation of the Remainder Term	215
	12.9	-	216
		Cauchy: The Intermediate Value Theorem	218
		Exercises	219
	12.12	Notes on the Literature	220
13	Integr	ation of Rational Functions	222
	-	Preliminary Remarks	222
	13.2	Newton's 1666 Basic Integrals	228
		Newton's Factorization of $x^n \pm 1$	230
	13.4	Cotes and de Moivre's Factorizations	231
	13.5	Euler: Integration of Rational Functions	233
	13.6	Euler's Generalization of His Earlier Work	234
	13.7	Hermite's Rational Part Algorithm	237
	13.8	Johann Bernoulli: Integration of $\sqrt{ax^2 + bx + c}$	238
	13.9	Exercises	239
	13.10	Notes on the Literature	243
14	Differ	ence Equations	245
	14.1	Preliminary Remarks	245
	14.2	De Moivre on Recurrent Series	247
	14.3	Stirling's Method of Ultimate Relations	250
	14.4	Daniel Bernoulli on Difference Equations	252
	14.5	Lagrange: Nonhomogeneous Equations	254
	14.6	Laplace: Nonhomogeneous Equations	257
	14.7	Exercises	258
	14.8	Notes on the Literature	259
15	Differ	ential Equations	260
	15.1	Preliminary Remarks	260
	15.2	Leibniz: Equations and Series	268
	15.3	Newton on Separation of Variables	270
	15.4	Johann Bernoulli's Solution of a First-Order Equation	271
	15.5	Euler on General Linear Equations with Constant Coefficients	272
	15.6	Euler: Nonhomogeneous Equations	274
	15.7	Lagrange's Use of the Adjoint	276
	15.8	Jakob Bernoulli and Riccati's Equation	278
	15.9	Riccati's Equation	278

viii

	15.10 Singular Solutions15.11 Mukhopadhyay on Monge's Equation15.12 Exercises15.13 Notes on the Literature	279 283 285 287
16	 Series and Products for Elementary Functions 16.1 Preliminary Remarks 16.2 Euler: Series for Elementary Functions 16.3 Euler: Products for Trigonometric Functions 16.4 Euler's Finite Product for sin nx 16.5 Cauchy's Derivation of the Product Formulas 16.6 Euler and Niklaus I Bernoulli: Partial Fractions Expansions of 	289 289 292 293 294 295
	Trigonometric Functions16.7Euler: Dilogarithm16.8Landen's Evaluation of ζ (2)16.9Spence: Two-Variable Dilogarithm Formula16.10Exercises16.11Notes on the Literature	298 301 302 304 306 310
17	 Solution of Equations by Radicals 17.1 Preliminary Remarks 17.2 Viète's Trigonometric Solution of the Cubic 17.3 Descartes's Solution of the Quartic 17.4 Euler's Solution of a Quartic 17.5 Gauss: Cyclotomy, Lagrange Resolvents, and Gauss Sums 17.6 Kronecker: Irreducibility of the Cyclotomic Polynomial 17.7 Exercises 17.8 Notes on the Literature 	311 316 318 319 320 324 325 325
18	 Symmetric Functions 18.1 Preliminary Remarks 18.2 Euler's Proofs of Newton's Rule 18.3 Maclaurin's Proof of Newton's Rule 18.4 Waring's Power Sum Formula 18.5 Gauss's Fundamental Theorem of Symmetric Functions 18.6 Cauchy: Fundamental Theorem of Symmetric Functions 18.7 Cauchy: Elementary Symmetric Functions as Rational Functions of Odd Power Sums 18.8 Laguerre and Pólya on Symmetric Functions 18.9 MacMahon's Generalization of Waring's Formula 18.10 Exercises 18.11 Notes on the Literature 	326 326 331 332 334 334 335 336 337 340 343 344
19	 Calculus of Several Variables 19.1 Preliminary Remarks 19.2 Homogeneous Functions 19.3 Cauchy: Taylor Series in Several Variables 	346 346 351 352

Contents

	19.7 19.8 19.9 19.10		354 356 358 359 361 362 365 365
20	Algeb	raic Analysis: The Calculus of Operations	367
	20.1	Preliminary Remarks	367
	20.2	Lagrange's Extension of the Euler-Maclaurin Formula	375
	20.3	Français's Method of Solving Differential Equations	379
	20.4	Herschel: Calculus of Finite Differences	380
	20.5	Murphy's Theory of Analytical Operations	382
	20.6	Duncan Gregory's Operational Calculus	384
	20.7	Boole's Operational Calculus	387
	20.8	Jacobi and the Symbolic Method	390
	20.9		392
		Hamilton's Algebra of Complex Numbers and Quaternions	393
		Exercises	397
	20.12	Notes on the Literature	398
21	Fourie	er Series	400
	21.1	Preliminary Remarks	400
	21.2	Euler: Trigonometric Expansion of a Function	406
	21.3	Lagrange on the Longitudinal Motion of the Loaded	
		Elastic String	407
	21.4	Euler on Fourier Series	410
		Fourier: Linear Equations in Infinitely Many Unknowns	412
		Dirichlet's Proof of Fourier's Theorem	417
		Dirichlet: On the Evaluation of Gauss Sums	421
		Exercises	424
	21.9	Notes on the Literature	425
22	Trigor	ometric Series after 1830	427
	22.1	Preliminary Remarks	427
	22.2	The Riemann Integral	429
	22.3	Smith: Revision of Riemann and Discovery of the Cantor Set	431
	22.4	Riemann's Theorems on Trigonometric Series	432
	22.5	The Riemann–Lebesgue Lemma	436
	22.6	Schwarz's Lemma on Generalized Derivatives	436
	22.7	Cantor's Uniqueness Theorem	437
	22.8	Exercises	439
	22.9	Notes on the Literature	443

х

23	The G	amma Function	444		
	23.1	Preliminary Remarks	444		
	23.2	Stirling: $\Gamma(1/2)$ by Newton–Bessel Interpolation	450		
	23.3	Euler's Evaluation of the Beta Integral	453		
	23.4	Gauss's Theory of the Gamma Function	457		
	23.5	Poisson, Jacobi, and Dirichlet: Beta Integrals	460		
	23.6	Bohr, Mollerup, and Artin on the Gamma Function	462		
	23.7	Kummer's Fourier Series for $\ln \Gamma(x)$	465		
	23.8	Exercises	467		
	23.9	Notes on the Literature	474		
24	The Asymptotic Series for $\ln \Gamma(x)$ 4				
2 .	24.1		476		
	24.2	-	481		
	24.3	Stirling's Asymptotic Series	483		
	24.4	Binet's Integrals for $\ln \Gamma(x)$	486		
	24.5	Cauchy's Proof of the Asymptotic Character of de Moivre's Series	488		
	24.6	Exercises	489		
	24.7	Notes on the Literature	493		
<u>م</u> ج					
25		uler-Maclaurin Summation Formula	494		
	25.1	Preliminary Remarks	494		
	25.2	Euler on the Euler-Maclaurin Formula	499		
	25.3	Maclaurin's Derivation of the Euler–Maclaurin Formula	501		
	25.4	Poisson's Remainder Term	503		
	25.5	Jacobi's Remainder Term	505		
	25.6	Euler on the Fourier Expansions of Bernoulli Polynomials	507		
	25.7	Abel's Derivation of the Plana–Abel Formula	508		
	25.8	Exercises	509		
	25.9	Notes on the Literature	513		
26	L-Ser		515		
	26.1	Preliminary Remarks	515		
	26.2		521		
	26.3	Euler: Bernoulli Numbers and $\sum 1/n^{2k}$	522		
	26.4	Euler's Evaluation of Some L-Series Values by Partial Fractions	524		
	26.5	Euler's Evaluation of $\sum 1/n^2$ by Integration	525		
	26.6	N. Bernoulli's Evaluation of $\sum 1/(2n+1)^2$	527		
	26.7	Euler and Goldbach: Double Zeta Values	528		
	26.8	Dirichlet's Summation of $L(1, \chi)$	532		
	26.9	Eisenstein's Proof of the Functional Equation	535		
	26.10	Riemann's Derivations of the Functional Equation	536		
	26.11	Euler's Product for $\sum 1/n^s$	539		
	26.12	Dirichlet Characters	540		
	26.13	Exercises	542		
	26.14	Notes on the Literature	545		

27	The Hypergeometric Series	547
	27.1 Preliminary Remarks	547
	27.2 Euler's Derivation of the Hypergeometric Equation	555
	27.3 Pfaff's Derivation of the ${}_{3}F_{2}$ Identity	556
	27.4 Gauss's Contiguous Relations and Summation Formula	557
	27.5 Gauss's Proof of the Convergence of $F(a, b, c, x)$	
	for $c - a - b > 0$	559
	27.6 Gauss's Continued Fraction	560
	27.7 Gauss: Transformations of Hypergeometric Functions	561
	27.8 Kummer's 1836 Paper on Hypergeometric Series	564
	27.9 Jacobi's Solution by Definite Integrals	565
	27.10 Riemann's Theory of Hypergeometric Functions	567
	27.11 Exercises	569
	27.12 Notes on the Literature	572
28	Orthogonal Polynomials	574
	28.1 Preliminary Remarks	574
	28.2 Legendre's Proof of the Orthogonality of His Polynomials	s 578
	28.3 Gauss on Numerical Integration	579
	28.4 Jacobi's Commentary on Gauss	582
	28.5 Murphy and Ivory: The Rodrigues Formula	583
	28.6 Liouville's Proof of the Rodrigues Formula	585
	28.7 The Jacobi Polynomials	587
	28.8 Chebyshev: Discrete Orthogonal Polynomials	590
	28.9 Chebyshev and Orthogonal Matrices	594
	28.10 Chebyshev's Discrete Legendre and Jacobi Polynomials	594
	28.11 Exercises	596
	28.12 Notes on the Literature	597
29	q-Series	599
	29.1 Preliminary Remarks	599
	29.2 Jakob Bernoulli's Theta Series	605
	29.3 Euler's q-series Identities	605
	29.4 Euler's Pentagonal Number Theorem	606
	29.5 Gauss: Triangular and Square Numbers Theorem	608
	29.6 Gauss Polynomials and Gauss Sums	611
	29.7 Gauss's q-Binomial Theorem and the Triple Product Iden	tity 615
	29.8 Jacobi: Triple Product Identity	617
	29.9 Eisenstein: q-Binomial Theorem	618
	29.10 Jacobi's q-Series Identity	619
	29.11 Cauchy and Ramanujan: The Extension of the Triple	
	Product	621
	29.12 Rodrigues and MacMahon: Combinatorics	622
	29.13 Exercises	623
	29.14 Notes on the Literature	625

10

xii

	٠	٠	٠
v	1	1	
л	л	Ŧ	1

30	Partit	ions	627
	30.1	Preliminary Remarks	627
	30.2	Sylvester on Partitions	638
	30.3	Cayley: Sylvester's Formula	642
	30.4	Ramanujan: Rogers-Ramanujan Identities	644
	30.5	Ramanujan's Congruence Properties of Partitions	646
	30.6	Exercises	649
	30.7	Notes on the Literature	651
31	a-Ser	ies and q-Orthogonal Polynomials	653
51	31.1	Preliminary Remarks	653
	31.2	Heine's Transformation	661
	31.3	Rogers: Threefold Symmetry	662
	31.4	Rogers: Rogers–Ramanujan Identities	665
	31.5	Rogers: Third Memoir	670
	31.6	Rogers–Szegő Polynomials	671
	31.7	Feldheim and Lanzewizky: Orthogonality of q-Ultraspherical	0.2
	0111	Polynomials	673
	31.8	Exercises	677
	31.9	Notes on the Literature	67 9
22	Drim	as in Arithmetic Progressions	680
32		es in Arithmetic Progressions Preliminary Remarks	680
	32.1	-	682
	32.2	Dirichlet: Infinitude of Primes in an Arithmetic Progression	683
	32.3		686
	32.4	Class Number and $L_{\chi}(1)$ De la Vallée Poussin's Complex Analytic Proof of $L_{\chi}(1) \neq 0$	688
	32.5		689
	32.0	Gelfond and Linnik: Proof of $L_{\chi}(1) \neq 0$ Monsky's Proof That $L_{\chi}(1) \neq 0$	691
	32.7	Monsky's Proof That $L_{\chi}(1) \neq 0$ Exercises	692
	32.8 32.9	Notes on the Literature	692 694
	32.9	Notes on the Literature	
33	Distr	ibution of Primes: Early Results	695
	33.1	Preliminary Remarks	695
	33.2	Chebyshev on Legendre's Formula	701
	33.3	Chebyshev's Proof of Bertrand's Conjecture	705
	33.4		710
	33.5	Mertens's Evaluation of $\prod_{p \le x} \left(1 - \frac{1}{p}\right)^{-1}$	710
	33.6	Riemann's Formula for $\pi(x)$	714
	33.7	Exercises	717
	33.8	Notes on the Literature	719
<u> </u>			
34		iant Theory: Cayley and Sylvester	720
	34.1	Preliminary Remarks	720
	34.2	Boole's Derivation of an Invariant	729

Contents

	34.3	Differential Operators of Cayley and Sylvester	733
	34.4	Cayley's Generating Function for the Number of Invariants	736
	34.5	Sylvester's Fundamental Theorem of Invariant Theory	740
	34.6	Hilbert's Finite Basis Theorem	743
	34.7	Hilbert's Nullstellensatz	746
	34.8	Exercises	746
	34.9	Notes on the Literature	747
35		nability	749
	35.1	Preliminary Remarks	749
	35.2	Fejér: Summability of Fourier Series	760
	35.3	Karamata's Proof of the Hardy-Littlewood Theorem	763
	35.4	Wiener's Proof of Littlewood's Theorem	764
	35.5	Hardy and Littlewood: The Prime Number Theorem	766
	35.6	Wiener's Proof of the PNT	768
	35.7		771
	35.8	Gelfand: Normed Rings	772
	35.9	Exercises	775
	35.10	Notes on the Literature	777
36		ic Functions: Eighteenth Century	778
	36.1	Preliminary Remarks	778
	36.2	Fagnano Divides the Lemniscate	786
	36.3	Euler: Addition Formula	790
	36.4	Cayley on Landen's Transformation	791
	36.5	Lagrange, Gauss, Ivory on the agM	794
	36.6	Remarks on Gauss and Elliptic Functions	800
	36.7	Exercises	811
	36.8	Notes on the Literature	813
37		c Functions: Nineteenth Century	816
	37.1	Preliminary Remarks	816
	37.2	Abel: Elliptic Functions	821
	37.3	Abel: Infinite Products	823
	37.4	Abel: Division of Elliptic Functions and Algebraic Equations	826
	37.5	Abel: Division of the Lemniscate	830
		Jacobi's Elliptic Functions	832
		Jacobi: Cubic and Quintic Transformations	834
		Jacobi's Transcendental Theory of Transformations	839
	37.9	Jacobi: Infinite Products for Elliptic Functions	844
		Jacobi: Sums of Squares	847
		Cauchy: Theta Transformations and Gauss Sums	849
		Eisenstein: Reciprocity Laws	852
		Liouville's Theory of Elliptic Functions	858
		Exercises	863
	37.15	Notes on the Literature	865

38. 38. 38. 38. 38.	 ational and Transcendental Numbers Preliminary Remarks Liouville Numbers Hermite's Proof of the Transcendence of e Hilbert's Proof of the Transcendence of e Exercises Notes on the Literature 	867 867 878 880 884 885 885
39. 39. 39. 39. 39. 39. 39. 39. 39. 39.	 Jensen's Proof Bäcklund Proof of Jensen's Formula R. Nevanlinna's Proof of the Poisson–Jensen Formula 	887 887 892 894 895 896 898 901 902 902 902 903 905 906
40 Un 40. 40. 40. 40. 40. 40. 40. 40. 40. 40.	 Gronwall: Area Inequalities Bieberbach's Conjecture Littlewood: a_n ≤ en Littlewood and Paley on Odd Univalent Functions Karl Löwner and the Parametric Method De Branges: Proof of Bieberbach's Conjecture Exercises 	907 907 914 916 917 918 920 923 927 928
41.	 Gauss on Irreducible Polynomials Modulo a Prime Galois on Finite Fields Dedekind's Formula Exercises Notes on the Literature 	929 929 932 932 933 936 939 940 941 943 959