Handbook of Monte Carlo Methods

Dirk P. Kroese
University of Queensland

Thomas Taimre
University of Queensland

Zdravko I. Botev
Université de Montréal

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION
CONTENTS

Preface xvii
Acknowledgments xix

1 Uniform Random Number Generation 1

1.1 Random Numbers 1
 1.1.1 Properties of a Good Random Number Generator 2
 1.1.2 Choosing a Good Random Number Generator 3

1.2 Generators Based on Linear Recurrences 4
 1.2.1 Linear Congruential Generators 4
 1.2.2 Multiple-Recursive Generators 5
 1.2.3 Matrix Congruential Generators 6
 1.2.4 Modulo 2 Linear Generators 6

1.3 Combined Generators 8
1.4 Other Generators 10
1.5 Tests for Random Number Generators 11
 1.5.1 Spectral Test 12
 1.5.2 Empirical Tests 14

References 21
2 Quasirandom Number Generation 25
 2.1 Multidimensional Integration 25
 2.2 Van der Corput and Digital Sequences 27
 2.3 Halton Sequences 29
 2.4 Faure Sequences 31
 2.5 Sobol' Sequences 33
 2.6 Lattice Methods 36
 2.7 Randomization and Scrambling 38

References 40

3 Random Variable Generation 43
 3.1 Generic Algorithms Based on Common Transformations 44
 3.1.1 Inverse-Transform Method 45
 3.1.2 Other Transformation Methods 47
 3.1.3 Table Lookup Method 55
 3.1.4 Alias Method 56
 3.1.5 Acceptance–Rejection Method 59
 3.1.6 Ratio of Uniforms Method 66
 3.2 Generation Methods for Multivariate Random Variables 67
 3.2.1 Copulas 68
 3.3 Generation Methods for Various Random Objects 70
 3.3.1 Generating Order Statistics 70
 3.3.2 Generating Uniform Random Vectors in a Simplex 71
 3.3.3 Generating Random Vectors Uniformly Distributed in a Unit Hyperball and Hypersphere 74
 3.3.4 Generating Random Vectors Uniformly Distributed in a Hyperellipsoid 75
 3.3.5 Uniform Sampling on a Curve 75
 3.3.6 Uniform Sampling on a Surface 76
 3.3.7 Generating Random Permutations 79
 3.3.8 Exact Sampling From a Conditional Bernoulli Distribution 80

References 83

4 Probability Distributions 85
 4.1 Discrete Distributions 85
 4.1.1 Bernoulli Distribution 85
 4.1.2 Binomial Distribution 86
 4.1.3 Geometric Distribution 91
 4.1.4 Hypergeometric Distribution 93
 4.1.5 Negative Binomial Distribution 94
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.6</td>
<td>Phase-Type Distribution (Discrete Case)</td>
<td>96</td>
</tr>
<tr>
<td>4.1.7</td>
<td>Poisson Distribution</td>
<td>98</td>
</tr>
<tr>
<td>4.1.8</td>
<td>Uniform Distribution (Discrete Case)</td>
<td>101</td>
</tr>
<tr>
<td>4.2</td>
<td>Continuous Distributions</td>
<td></td>
</tr>
<tr>
<td>4.2.1</td>
<td>Beta Distribution</td>
<td>102</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Cauchy Distribution</td>
<td>106</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Exponential Distribution</td>
<td>108</td>
</tr>
<tr>
<td>4.2.4</td>
<td>F Distribution</td>
<td>109</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Fréchet Distribution</td>
<td>111</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Gamma Distribution</td>
<td>112</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Gumbel Distribution</td>
<td>116</td>
</tr>
<tr>
<td>4.2.8</td>
<td>Laplace Distribution</td>
<td>118</td>
</tr>
<tr>
<td>4.2.9</td>
<td>Logistic Distribution</td>
<td>119</td>
</tr>
<tr>
<td>4.2.10</td>
<td>Log-Normal Distribution</td>
<td>120</td>
</tr>
<tr>
<td>4.2.11</td>
<td>Normal Distribution</td>
<td>122</td>
</tr>
<tr>
<td>4.2.12</td>
<td>Pareto Distribution</td>
<td>125</td>
</tr>
<tr>
<td>4.2.13</td>
<td>Phase-Type Distribution (Continuous Case)</td>
<td>126</td>
</tr>
<tr>
<td>4.2.14</td>
<td>Stable Distribution</td>
<td>129</td>
</tr>
<tr>
<td>4.2.15</td>
<td>Student's t Distribution</td>
<td>131</td>
</tr>
<tr>
<td>4.2.16</td>
<td>Uniform Distribution (Continuous Case)</td>
<td>134</td>
</tr>
<tr>
<td>4.2.17</td>
<td>Wald Distribution</td>
<td>135</td>
</tr>
<tr>
<td>4.2.18</td>
<td>Weibull Distribution</td>
<td>137</td>
</tr>
<tr>
<td>4.3</td>
<td>Multivariate Distributions</td>
<td></td>
</tr>
<tr>
<td>4.3.1</td>
<td>Dirichlet Distribution</td>
<td>139</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Multinomial Distribution</td>
<td>141</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Multivariate Normal Distribution</td>
<td>143</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Multivariate Student’s t Distribution</td>
<td>147</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Wishart Distribution</td>
<td>148</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>Random Process Generation</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Gaussian Processes</td>
<td></td>
</tr>
<tr>
<td>5.1.1</td>
<td>Markovian Gaussian Processes</td>
<td>159</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Stationary Gaussian Processes and the FFT</td>
<td>160</td>
</tr>
<tr>
<td>5.2</td>
<td>Markov Chains</td>
<td>162</td>
</tr>
<tr>
<td>5.3</td>
<td>Markov Jump Processes</td>
<td>166</td>
</tr>
<tr>
<td>5.4</td>
<td>Poisson Processes</td>
<td>170</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Compound Poisson Process</td>
<td>174</td>
</tr>
<tr>
<td>5.5</td>
<td>Wiener Process and Brownian Motion</td>
<td>177</td>
</tr>
<tr>
<td>5.6</td>
<td>Stochastic Differential Equations and Diffusion Processes</td>
<td></td>
</tr>
<tr>
<td>5.6.1</td>
<td>Euler's Method</td>
<td>185</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Milstein's Method</td>
<td>187</td>
</tr>
</tbody>
</table>
CONTENTS

5.6.3 Implicit Euler 188
5.6.4 Exact Methods 189
5.6.5 Error and Accuracy 191
5.7 Brownian Bridge 193
5.8 Geometric Brownian Motion 196
5.9 Ornstein–Uhlenbeck Process 198
5.10 Reflected Brownian Motion 200
5.11 Fractional Brownian Motion 203
5.12 Random Fields 206
5.13 Lévy Processes 208
5.13.1 Increasing Lévy Processes 211
5.13.2 Generating Lévy Processes 214
5.14 Time Series 219
References 222

6 Markov Chain Monte Carlo 225
 6.1 Metropolis–Hastings Algorithm 226
 6.1.1 Independence Sampler 227
 6.1.2 Random Walk Sampler 230
 6.2 Gibbs Sampler 233
 6.3 Specialized Samplers 240
 6.3.1 Hit-and-Run Sampler 240
 6.3.2 Shake-and-Bake Sampler 251
 6.3.3 Metropolis–Gibbs Hybrids 256
 6.3.4 Multiple-Try Metropolis–Hastings 257
 6.3.5 Auxiliary Variable Methods 259
 6.3.6 Reversible Jump Sampler 269
 6.4 Implementation Issues 273
 6.5 Perfect Sampling 274
References 276

7 Discrete Event Simulation 281
 7.1 Simulation Models 281
 7.2 Discrete Event Systems 283
 7.3 Event-Oriented Approach 285
 7.4 More Examples of Discrete Event Simulation 289
 7.4.1 Inventory System 289
 7.4.2 Tandem Queue 293
 7.4.3 Repairman Problem 296
References 300
8 Statistical Analysis of Simulation Data

8.1 Simulation Data
 8.1.1 Data Visualization
 8.1.2 Data Summarization

8.2 Estimation of Performance Measures for Independent Data
 8.2.1 Delta Method

8.3 Estimation of Steady-State Performance Measures
 8.3.1 Covariance Method
 8.3.2 Batch Means Method
 8.3.3 Regenerative Method

8.4 Empirical Cdf

8.5 Kernel Density Estimation
 8.5.1 Least Squares Cross Validation
 8.5.2 Plug-in Bandwidth Selection

8.6 Resampling and the Bootstrap Method

8.7 Goodness of Fit
 8.7.1 Graphical Procedures
 8.7.2 Kolmogorov–Smirnov Test
 8.7.3 Anderson–Darling Test
 8.7.4 χ^2 Tests

References

9 Variance Reduction

9.1 Variance Reduction Example

9.2 Antithetic Random Variables

9.3 Control Variables

9.4 Conditional Monte Carlo

9.5 Stratified Sampling

9.6 Latin Hypercube Sampling

9.7 Importance Sampling
 9.7.1 Minimum-Variance Density
 9.7.2 Variance Minimization Method
 9.7.3 Cross-Entropy Method
 9.7.4 Weighted Importance Sampling
 9.7.5 Sequential Importance Sampling
 9.7.6 Response Surface Estimation via Importance Sampling

9.8 Quasi Monte Carlo

References
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Rare-Event Simulation</td>
<td>381</td>
</tr>
<tr>
<td>10.1</td>
<td>Efficiency of Estimators</td>
<td>382</td>
</tr>
<tr>
<td>10.2</td>
<td>Importance Sampling Methods for Light Tails</td>
<td>385</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Estimation of Stopping Time Probabilities</td>
<td>386</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Estimation of Overflow Probabilities</td>
<td>389</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Estimation For Compound Poisson Sums</td>
<td>391</td>
</tr>
<tr>
<td>10.3</td>
<td>Conditioning Methods for Heavy Tails</td>
<td>393</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Estimation for Compound Sums</td>
<td>394</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Sum of Nonidentically Distributed Random Variables</td>
<td>396</td>
</tr>
<tr>
<td>10.4</td>
<td>State-Dependent Importance Sampling</td>
<td>398</td>
</tr>
<tr>
<td>10.5</td>
<td>Cross-Entropy Method for Rare-Event Simulation</td>
<td>404</td>
</tr>
<tr>
<td>10.6</td>
<td>Splitting Method</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>416</td>
</tr>
<tr>
<td>11</td>
<td>Estimation of Derivatives</td>
<td>421</td>
</tr>
<tr>
<td>11.1</td>
<td>Gradient Estimation</td>
<td>421</td>
</tr>
<tr>
<td>11.2</td>
<td>Finite Difference Method</td>
<td>423</td>
</tr>
<tr>
<td>11.3</td>
<td>Infinitesimal Perturbation Analysis</td>
<td>426</td>
</tr>
<tr>
<td>11.4</td>
<td>Score Function Method</td>
<td>428</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Score Function Method With Importance Sampling</td>
<td>430</td>
</tr>
<tr>
<td>11.5</td>
<td>Weak Derivatives</td>
<td>433</td>
</tr>
<tr>
<td>11.6</td>
<td>Sensitivity Analysis for Regenerative Processes</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>438</td>
</tr>
<tr>
<td>12</td>
<td>Randomized Optimization</td>
<td>441</td>
</tr>
<tr>
<td>12.1</td>
<td>Stochastic Approximation</td>
<td>441</td>
</tr>
<tr>
<td>12.2</td>
<td>Stochastic Counterpart Method</td>
<td>446</td>
</tr>
<tr>
<td>12.3</td>
<td>Simulated Annealing</td>
<td>449</td>
</tr>
<tr>
<td>12.4</td>
<td>Evolutionary Algorithms</td>
<td>452</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Genetic Algorithms</td>
<td>452</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Differential Evolution</td>
<td>454</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Estimation of Distribution Algorithms</td>
<td>456</td>
</tr>
<tr>
<td>12.5</td>
<td>Cross-Entropy Method for Optimization</td>
<td>457</td>
</tr>
<tr>
<td>12.6</td>
<td>Other Randomized Optimization Techniques</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>461</td>
</tr>
<tr>
<td>13</td>
<td>Cross-Entropy Method</td>
<td>463</td>
</tr>
<tr>
<td>13.1</td>
<td>Cross-Entropy Method</td>
<td>463</td>
</tr>
<tr>
<td>13.2</td>
<td>Cross-Entropy Method for Estimation</td>
<td>464</td>
</tr>
<tr>
<td>13.3</td>
<td>Cross-Entropy Method for Optimization</td>
<td>468</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Combinatorial Optimization</td>
<td>469</td>
</tr>
</tbody>
</table>
17.1.1 Boundary Value Problems 579
17.1.2 Terminal Value Problems 584
17.1.3 Terminal-Boundary Problems 585

17.2 Transport Processes and Equations 587
17.2.1 Application to Transport Equations 589
17.2.2 Boltzmann Equation 593

17.3 Connections to ODEs Through Scaling 597

References 602

Appendix A: Probability and Stochastic Processes 605

A.1 Random Experiments and Probability Spaces 605
A.1.1 Properties of a Probability Measure 607
A.2 Random Variables and Probability Distributions 607
A.2.1 Probability Density 610
A.2.2 Joint Distributions 611
A.3 Expectation and Variance 612
A.3.1 Properties of the Expectation 614
A.3.2 Variance 615
A.4 Conditioning and Independence 616
A.4.1 Conditional Probability 616
A.4.2 Independence 616
A.4.3 Covariance 617
A.4.4 Conditional Density and Expectation 618
A.5 L^p Space 619
A.6 Functions of Random Variables 620
A.6.1 Linear Transformations 620
A.6.2 General Transformations 620
A.7 Generating Function and Integral Transforms 621
A.7.1 Probability Generating Function 621
A.7.2 Moment Generating Function and Laplace Transform 621
A.7.3 Characteristic Function 622
A.8 Limit Theorems 623
A.8.1 Modes of Convergence 623
A.8.2 Converse Results on Modes of Convergence 624
A.8.3 Law of Large Numbers and Central Limit Theorem 625
A.9 Stochastic Processes 626
A.9.1 Gaussian Property 627
A.9.2 Markov Property 628
A.9.3 Martingale Property 629
A.9.4 Regenerative Property 630
A.9.5 Stationarity and Reversibility 631
A.10 Markov Chains 632
A.10.1 Classification of States 633
A.10.2 Limiting Behavior 633
A.10.3 Reversibility 635
A.11 Markov Jump Processes 635
A.11.1 Limiting Behavior 638
A.12 Itô Integral and Itô Processes 639
A.13 Diffusion Processes 643
A.13.1 Kolmogorov Equations 646
A.13.2 Stationary Distribution 648
A.13.3 Feynman–Kac Formula 648
A.13.4 Exit Times 649
References 650

Appendix B: Elements of Mathematical Statistics 653

B.1 Statistical Inference 653
B.1.1 Classical Models 654
B.1.2 Sufficient Statistics 655
B.1.3 Estimation 656
B.1.4 Hypothesis Testing 660
B.2 Likelihood 664
B.2.1 Likelihood Methods for Estimation 667
B.2.2 Numerical Methods for Likelihood Maximization 669
B.2.3 Likelihood Methods for Hypothesis Testing 671
B.3 Bayesian Statistics 672
B.3.1 Conjugacy 675
References 676

Appendix C: Optimization 677

C.1 Optimization Theory 677
C.1.1 Lagrangian Method 683
C.1.2 Duality 684
C.2 Techniques for Optimization 685
C.2.1 Transformation of Constrained Problems 685
C.2.2 Numerical Methods for Optimization and Root Finding 687
C.3 Selected Optimization Problems 694
C.3.1 Satisfiability Problem 694
C.3.2 Knapsack Problem 694
C.3.3 Max-Cut Problem 695
C.3.4 Traveling Salesman Problem 695
C.3.5 Quadratic Assignment Problem 695
C.3.6 Clustering Problem 696
Appendix D: Miscellany

D.1 Exponential Families 701
D.2 Properties of Distributions 703
 D.2.1 Tail Properties 703
 D.2.2 Stability Properties 705
D.3 Cholesky Factorization 706
D.4 Discrete Fourier Transform, FFT, and Circulant Matrices 706
D.5 Discrete Cosine Transform 708
D.6 Differentiation 709
D.7 Expectation-Maximization (EM) Algorithm 711
D.8 Poisson Summation Formula 714
D.9 Special Functions 715
 D.9.1 Beta Function $B(\alpha, \beta)$ 715
 D.9.2 Incomplete Beta Function $I_x(\alpha, \beta)$ 715
 D.9.3 Error Function $\text{erf}(x)$ 715
 D.9.4 Digamma function $\psi(x)$ 716
 D.9.5 Gamma Function $\Gamma(\alpha)$ 716
 D.9.6 Incomplete Gamma Function $P(\alpha, x)$ 716
 D.9.7 Hypergeometric Function ${}_2F_1(a; b; c; z)$ 716
 D.9.8 Confluent Hypergeometric Function ${}_1F_1(\alpha; \gamma; x)$ 717
 D.9.9 Modified Bessel Function of the Second Kind $K_\nu(x)$ 717
References 717

Acronyms and Abbreviations 719

List of Symbols 721

List of Distributions 724

Index 727