VOLUME EIGHTY-EIGHT

VITAMINS AND HORMONES Hedgehog Signaling

Editor-in-Chief

GERALD LITWACK, PhD Toluca Lake, North Hollywood, California

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

CONTENTS

Com	ributors	хv
Pref	Preface	
1.	Hedgehog Signaling Siu Wah Choy and Shuk Han Cheng	1
	 Hedgehog Ligands Hedgehog Signaling Hedgehog Signaling in Zebrafish Eye Vesicle Patterning Hedgehog Signaling in Zebrafish Photoreceptor Differentiation Hedgehog Signaling in Zebrafish Inner Nuclear Layer Hedgehog Signaling in Zebrafish Ganglion Cell Differentiation References 	2 5 7 10 11 18
2.	Canonical and Noncanonical Hedgehog/GLI Signaling in Hematological Malignancies Fritz Aberger, Daniela Kern, Richard Greil, and Tanja Nicole Hartmann	25
	 Hedgehog Introduction Regulation of Canonical HH Signaling and Its Implication in Cancer SMO-Independent Modulation of GLI Activity Hedgehog in Hematopoiesis and Hematopoietic Stem Cells From HSC to CML T- and B-Cell Malignancies Outlook Acknowledgments References 	26 26 32 35 38 39 44 46 46
3.	Noncanonical Hedgehog Signaling Donna Brennan, Xiaole Chen, Lan Cheng, My Mahoney, and Natalia A. Riobo I. Definition II. Type I Noncanonical Signaling: Pathways Engaged Exclusively by Ptc1 III. Type II Noncanonical Signaling: Pathways Engaged by Smoothened IV. Noncanonical Hh Signaling in <i>Drosophila</i>	55 56 56 61 67
	V. Concluding Remarks References	68 68

4.	Gli Protein Nuclear Localization Signal Minoru Hatayama and Jun Aruga	73
	 Introduction II. Nuclear Localization Signal and Nuclear Export Signal III. NLS and NES Mapping IV. Sequence Comparison of Gli NLSs—NLSs in ZF Domains V. Predicted 3D Structure of Gli NLS VI. NLS Control of Gli/Ci Subcellular Localization in Hh Signaling VII. Perspectives References 	74 74 75 81 83 86 86
5۰	Mammalian Homologues of Drosophila Fused Kinase Alla Maloverjan and Marko Piirsoo	91
	 Introduction Introduction The Major Steps of Hh Signaling Ci/Gli Proteins are Transcription Factors Mediating Hh Activities Hedgehog Signaling Complex is Responsible for Regulation of ci Protein Regulation of Gli Proteins Fu is a Protein Kinase Playing Catalytic and Regulatory Roles in ci regulation VII. Protein Kinases Participating in the Regulation of Gli Proteins VIII. Controversial Roles of Stk36 IX. The Role of Ulk3 in Shh Signaling Pathway X. An Emerging Shh Signaling Model Involving Ulk3 Acknowledgments References 	92 93 94 96 98 99 100 101 103 106 107
6.	Identification, Functional Characterization, and Pathobiological Significance of GLI1 Isoforms in Human Cancers Richard L. Carpenter and Hui-Wen Lo	115
	 I. Introduction II. Structures and Properties of GLI1 Isoforms III. Regulation of GLI1 Isoforms by Canonical and Noncanonical Pathways IV. GLI1 Isoforms and Malignant Phenotypes of Cancer V. Conclusion and Future Directions Acknowledgments References 	116 117 121 126 133 135 135

Conte	ents
-------	------

7.	Gli-Similar Proteins: Their Mechanisms of Action, Physiological Functions, and Roles in Disease	141
	Kristin Lichti-Kaiser, Gary ZeRuth, Hong Soon Kang, Shivakumar Vasanth, and Anton M. Jetten	
	I. Introduction	142
	II. Mechanism of Action of Glis Proteins	144
	III. Role of Glis Proteins in Renal Physiology and Pathology	151
	IV. Role of Glis3 in Pancreas Physiology and Pathology	155
	V. Glis Functions in Other Tissues	160
	VI. Conclusion	163
	Acknowledgments	163
	References	163
8.	Sonic Hedgehog Regulates Wnt Activity During Neural Circuit	
	Formation	173
	Nicole H. Wilson and Esther T. Stoeckli	
	I. Introduction	174
	II. Shh and Wnt Signaling: Canonical Signaling Pathways	174
	III. Patterning and Morphogenesis of the Neural Tube	177
	IV. Establishment of Neuronal Polarization	184
	V. Axon Guidance	186
	VI. Synapse Formation	195
	VII. Other Factors Influencing Shh and Wnt Pathways	197
	VIII. Conclusions and Future Directions	200
	References	201
9.	Hedgehog/Gli Control by Ubiquitination/Acetylation Interplay	211
	Alberto Gulino, Lucia Di Marcotullio, Gianluca Canettieri, Enrico De Smaele, and Isabella Screpanti	
	1. Introduction	212
	II. Ubiquitin-Dependent Regulation of Hh Signaling	213
	III. Increasing the Complexity of Hh Signaling in Vertebrates:	
	The Cul1- and Cul3-Dependent Ubiquitination Processes	214
	IV. An Alternative Gli1 Control by the HECT-Type Itch E3	
	Ubiquitin Ligase-Based Processing	215
	V. Activation of Itch Function by Numb	216
	VI. Acetylation to Ubiquitination Connection in Hh Signaling	217

	VII. Implications of Ubiquitin-Dependent Events for Cell	
	Development and Tumorigenesis	218
	VIII. Implications for Ubiquitination/Acetylation Interplay in	
	Cell Development and Cancer Control	220
	IX. Conclusions	221
	Acknowledgments	222
	References	222
10.	Palmitoylation of Hedgehog Proteins	229
	John A. Buglino and Marilyn D. Resh	
	I. Introduction to Protein Palmitoylation	230
	II. Palmitoylation of Hedgehog Proteins	231
	III. Palmitoylation of Other Secreted Proteins	240
	IV. The MBOAT Family of Acyltransferases	242
	V. Conclusions and Future Directions	246
	Acknowledgments	246
	References	246
11.	Phosphorylation Regulation of Hedgehog Signaling	253
	Jianhang Jia	
	I. Introduction	253
	II. Phosphorylation of the Transcription Factor in Hh Signaling	255
	III. Phosphorylation of Smo Receptor in Hh Signaling	257
	IV. Other Phosphorylation Events in Hh Signaling	260
	V. Nonconserved Phosphorylation	262
	VI. Phosphatases in Hh Signaling	263
	VII. Differential Phosphorylation of Hh Signaling Components	264
	Acknowledgments	266
	References	266
12.	Protein Kinase A Activity and Hedgehog Signaling Pathway	273
	Tomoya Kotani	
	I. Introduction	274
	II. Function of PKA in Hedgehog-Responsive Cells	275
	III. Activation of PKA	279
	IV. PKA Activity in Hedgehog-Responding Cells	284
	V. Perspectives	286
	Acknowledgments	287
	References	287

13.	Phosphorylation of Gli by cAMP-Dependent Protein Kinase	293
	Yoshinari Asaoka	
	I. Introduction	294
	II. cAMP-Dependent Protein Kinase	295
	III. Hedgehog Signaling and cAMP-Dependent Protein Kinase	297
	IV. Gli Transcription Factors and cAMP-Dependent Protein Kinase	298
	V. Conclusions	301
	References	304
14.	ZFP932 Suppresses Cellular Hedgehog Response	
	and Patched1 Transcription	309
	G. Jason Huang, Zhenhua He, and Liang Ma	
	I. Introduction	310
	II. <i>Zfp932</i> Characterization	312
	III. ZFP932 Represses Ptch1 Expression	315
	IV. ZFP932 Represses Cellular Hedgehog-Signaling Response	327
	V. ZFP932 Regulates Osteoblast Differentiation	328
	VI. Conclusion	330
	Acknowledgments References	330
	References	331
15.	A New Era for an Ancient Drug: Arsenic Trioxide	
	and Hedgehog Signaling	333
	Elspeth M. Beauchamp and Aykut Üren	
	I. Historic Use of Arsenic in Medicine	334
	II. Molecular Mechanisms of Arsenic in Cancer Therapy	335
	III. Role of Hedgehog Signaling in Cancer	339
	IV. Effect of Arsenic on Hh Signaling	342
	V. Conclusions	345
	References	347
16.	Aberrations and Therapeutics Involving the	
	Developmental Pathway Hedgehog in Pancreatic cancer	355
	Fergal C. Kelleher and Raymond McDermott	
	I. Introduction	356
	II. The Hedgehog Pathway	357
	III. Hedgehog Therapeutics	362
	IV. Conclusion	375
	References	375

17.	Sonic Hedgehog Signaling and Potential Therapeutic Indications	379
	Nicholas C. Bambakidis and Kaine Onwuzulike	
	I. Sonic Hedgehog Discovered (Shh)	380
	II. Shh Signaling in Vertebrates	380
	III. Shh Second Messenger Systems	383
	IV. Shh in Stem Cell Proliferation	385
	V. Shh in Oncogenesis	387
	VI. Shh in Injury of the CNS	389
	VII. Conclusion	393
	References	393
18.	Sonic Hedgehog on Microparticles and Neovascularization	395
	Raffaella Soleti and Maria Carmen Martinez	
	I. Introduction	396
	II. Neovascularization	397
	III. Sonic Hedgehog	405
	IV. Microparticles	415
	V. Conclusion	424
	References	425
19.	"Patch"-ing up the Neurons: Revival or Enervation?	439
	Sayantani Ghosh, Arunabha Chakrabarti, and Debashis Mukhopadhyay	
	I. Introduction	440
	II. The "Patched" Transmission	442
	III. Ptch1 Expression in Neural Tissues	443
	IV. Ptch1 in Disease, Development, and Injury	445
	V. Conclusion	453
	Acknowledgments	454
	References	454
20.	Activation of Hedgehog Pathway in Gastrointestinal Cancers	461
	Ling Yang, Xiulan Su, and Jingwu Xie	
	I. Introduction	461
	II. Activation of the Hh Pathway in Esophageal Cancer	462
	III. Activation of the Hh Pathway in Gastric Cancer	464
	IV. Activation of the Hh Pathway in Colorectal Cancer	466
	V. Summary References	467
	VEIGIGIUGS	467

21.	The Role of Sonic Hedgehog as a Regulator of Gastric Function and Differentiation	473
	Rui Feng, Chang Xiao, and Yana Zavros	
	I. Introduction	474
	II. Hh in the Adult Stomach	474
	III. The Potential Role of Sonic Hh as a Gastric Hormone	481
	IV. Conclusions and Future Directions	484
	Acknowledgment	485
	References	485
22.	Sonic Hedgehog-Mediated Synergistic Effects	
	Guiding Angiogenesis and Osteogenesis	491
	Sabine Fuchs, Eva Dohle, and Charles James Kirkpatrick	
	I. General Introduction	492
	II. General Aspects of Shh Signaling	492
	III. The Role of Hh Morphogens in Bone Development and Repair IV. Shh: Potential Candidate Linking Angiogenesis and	493
	Osteogenesis V. Effects of Shh on Angiogenesis, Vessel Maturation,	494
	and Osteogenesis VI. Coculture Models as <i>In Vitro</i> Models to Investigate	494
	Effects of Shh on Osteogenesis and Angiogenesis	496
	VII. Effects of Shh on Angiogenesis in a Coculture Model	497
	VIII. Effects of Shh on Osteogenesis in a Coculture Model	499
	IX. Future Therapeutical Options and Delivery Strategies	501
	References	502
23.	Hedgehog Inhibition as an Anti-Cancer Strategy	507
	G. Praveen Raju and Diane Pham	
	I. Introduction	508
	II. Hh Signaling in Normal Development	508
	III. Hh Pathway Alterations in Cancer	509
	IV. Targeted Therapies for Hedgehog Dependent Cancers	512
	V. Conclusions and Future Directions	516
	Acknowledgments	518
	References	519
Inde	2X	523