Operational stability and reliability of urban bus routes in Zurich, Switzerland

Nelson Carrasco Olga Fink Prof. Dr. Ulrich Weidmann

Research project funded by the SBF in the framework of COST Action TU 0603 "Buses with High Levels of Service" (BHLS)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Table of Contents

1	Introd	uction	1
	1.1	Role and benefits of urban public transport	1
	1.2	Aim and scope of this project	1
	1.3	Report outline	3
2	Basic	principles of urban public transport systems	5
	2.1	Chapter overview	5
	2.2	Urban public transport as a system	5
	2.3	Basic operating elements	9
	2.4	Operational processes in urban bus lines	14
	2.5	Summary	28
3	Perfo	rmance and reliability	29
	3.1	Chapter overview	29
	3.2	Definition and relevance of performance	29
	3.3	Description and classification of elements influencing service reliability	
	3.4	Measuring performance and reliability	40
	3.5	A major consequence of unreliability: delay propagation	48
	3.6	Automatic data collection systems and service reliability	52
	3.7	Summary	56
4	Publi	c transport service planning	57
	4.1	Chapter overview	
	4.2	Urban transportation and public transport planning	
	4.3	Public transport generic planning process	60
	4.4	Service planning state of practice in Zurich	68
	4.5	Planning method comparison	78
	4.6	Summary	81
5	Publi	c transport service delivery analysis	83
	5.1	Chapter overview	83
	5.2	Line 31 characterization	83

	5.3	Service reliability characterization	
	5.4	Performance analysis and reporting	
	5.5	Summary	130
6	Comp	parison of planning and operations at the VBZ	131
	6.1	Chapter overview	131
	6.2	Qualitative comparison	
	6.3	Reliability improvement potential identification	135
	6.4	Summary	141
7	Impro	ving service reliability	143
	7.1	Chapter overview	
	7.2	Strategies to reduce unreliability	
	7.3	Possibilities for improving service reliability of Line 31	148
	7.4	Summary	153
8	Concl	usions and recommendations	155
	8.1	Research summary	155
	8.2	Findings and conclusions	157
	8.3	Limitation and further research	158
9	Refere	ences	161

List of Tables

Table 1	Characteristics of modes with different ROW categories13
Table 2	Process analysis of a fixed-route bus line16
Table 3	Sub-process definition of an urban bus line18
Table 4	Parameters influencing the stopping process23
Table 5	Parameters influencing frequency and process duration by station type
Table 6	Parameters influencing the frequency and duration of the driving process25
Table 7	Metrics and quantification of process elements27
Table 8	Categorization and classification of delay influencing elements
Table 9	Passenger-oriented reliability measures in public transport
Table 10	Operator-oriented reliability measures in public transport
Table 11	Punctuality threshold values in Zurich. All vehicles, all day. Departures
Table 12	Regularity threshold values used in this study45
Table 13	On-time performance Levels of Service (LOS)46
Table 14	Passenger waiting time threshold values used in this study
Table 15	Transition from manual to automatic data collection technology54
Table 16	Levels of spatial and temporal detail for data capture
Table 17	Travel time profiles defined in Zurich73
Table 18	Selected time profiles and number of observations. Line 31
Table 19	Main variables of interest included in the AVL data92
Table 20	Travel time summary statistics per time profile. Line 31 (in min)
Table 21	Travel time (TT) performance measures at route level. Line 31
Table 22	Route-level schedule deviation summary statistics (in min)

Table 23	Punctuality performance measures at route level. Line 31 eastbound
Table 24	Headways regularity summary statistics. Line 31 (in min)
Table 25	Headway regularity performance measures at route level. Line 31
Table 26	Fixed-route headway adherence LOS 118
Table 27	Passenger waiting time performance measures at route level
Table 28	Passenger waiting time bin frequencies. By Furth and Muller (2006)128
Table 29	Percentage of passengers in waiting time bins. Line 31 eastbound128
Table 30	Passenger waiting time bins. Evaluation threshold values per time profile 129
Table 31 F	Preventive strategies to increase reliability and their use in Zurich
Table 32	Corrective strategies to increase reliability and their use in Zurich147

List of Figures

Figure 1	Functional structure of public transport operations and planning
Figure 2	Public transport line, network and station concepts
Figure 3	Basic operating elements of public transport systems10
Figure 4	Schematic representation of the main elements in an urban bus line
Figure 5	Schematic representation of the dwell process of an urban bus line19
Figure 6	Process duration and frequency, and their influence on operational stability22
Figure 7	Conceptual model for service reliability improvement in public transport
Figure 8	Delay propagation principle and subsequent bus bunching49
Figure 9	Delay propagation model over time and distance
Figure 10	Four-level planning sequence in urban transportation
Figure 11	Tactical planning level in public transportation planning

Figure 12	Public transport generic scheduling flow process
Figure 13	General scheduling process at the VBZ71
Figure 14	Graphical timetable sample. Line 31
Figure 15	Topological map of Zurich's public transport network. Line 31 highlighted 84
Figure 16	Double articulated trolley buses providing service in Line 31
Figure 17	Average daily passenger distribution (Mon - Thu) 2009. Line 31 eastbound 85
Figure 18	Schematic AVL system architecture in Zurich86
Figure 19	Form used to register observations at stops and between them (Strecke)88
Figure 20	Schedule deviation for all observed trips. East (up) and Westbound trips89
Figure 21	Perceived delay-causing events between stops. All observations
Figure 22	Travel time distribution in minutes for all trips (Mon-Fri) of 03.2011
Figure 23	Travel time distribution in minutes (y) throughout the day (x) for all trips94
Figure 24	Travel time distribution for all trips (Mon-Fri) in 02.2011, Line 31
Figure 25	Route-level travel time box-plot distribution by time profile, Line 31
Figure 26	Stop-level (normalized) travel time distribution. Selected time profiles97
Figure 27	Run time ratio from previous to shown stop by time profile, Line 31
Figure 28	Run time coefficient of variation (cv) from stop <i>n</i> -1 to stop <i>n</i>
Figure 29	Average speed distribution for all trips, first and last third of Line 31 102
Figure 30	Median speed between previous and shown stop. All time profiles
Figure 31	Route-level schedule deviation distribution. All time profiles
Figure 32	Mean schedule deviation at stop level. All time profiles, Line 31
Figure 33	Schedule deviation distribution at stop level for two time profiles
Figure 34	Standard deviation of schedule adherence at stop level

Figure 35	On-time performance at stop level. Zurich threshold109
Figure 36	OTP at stop level for all time profiles. 1 min early to 5 min late
Figure 37	Headway frequency distribution at route level. All time profiles
Figure 38	Headway box-plot distribution at route level. All time profiles113
Figure 39	Average absolute headways for all time profiles at stop level
Figure 40	Average absolute headway deviation for all time profiles at stop level
Figure 41	Actual headway distribution at stop level for two time profiles115
Figure 42	Standard deviation of actual headway for all time profiles at stop level 116
Figure 43	Two different points at stop Schlieren Zentrum117
Figure 44	Observed headway coefficient of variation (cv) at stop level
Figure 45	Headway coefficient of variation. TCQSM methodology applied to Zurich 119
Figure 46	Departure time of successive runs at the stop level. All trips of 02.2011 120
Figure 47	Recorded departure time of successive runs. All trips of 7.2.2011121
Figure 48	Temporal density of passenger arrivals at stops in Zurich. AM peak hour 122
Figure 49	Cumulative passenger waiting time distribution. All time profiles125
Figure 50	Passenger waiting time summary. All time profiles at the route level
Figure 51	Percentage of passengers in waiting time bins. All time profiles
Figure 52	Dwell time variation at the stop level for all time profiles136