Design of Heterogeneous Catalysts

New Approaches based on Synthesis, Characterization and Modeling

Edited by Umit S. Ozkan

WILEY-VCH Verlag GmbH & Co. KGaA

Contents

Preface XIII
List of Contributors XV

1	Use of Oxide Ligands in Designing Catalytic Active Sites 1
	Edward L. Lee and Israel E. Wachs
1.1	Introduction 1
1.2	Molecular Structural Determination of Supported Metal Oxide Catalysts with <i>In Situ</i> Raman Spectroscopy 3
1.3	Characterization of AlO _x , TiO _x , and ZrO_x Surface-Modified SiO ₂ 3
1.4	Anchoring Site of Surface M_1O_x Species on Supported M_2O_x/SiO_2 5
1.5	Molecular Structure of Dehydrated Supported V_2O_5/SiO_2 and $V_2O_5/M_2O_x/SiO_2$ Catalyst Systems 5
1.6	Molecular Structure of Dehydrated Supported MoO ₃ /SiO ₂ and MoO ₃ /M ₂ O _x /SiO ₂ Catalyst Systems 8
1.7	Molecular Structure of Dehydrated Supported Re ₂ O ₇ /SiO ₂ and Re ₂ O ₇ /M ₂ O _x /SiO ₂ Catalyst Systems 11
1.8	Electronic Structure of Dehydrated Supported MO_x/SiO_2 and $M_1O_x/M_2O_x/SiO_2$ Catalysts via In Situ UV–Vis Spectroscopy 14
1.9	Determination of Surface Kinetic Parameters 15
1.10	Redox Surface Reactivity of Model Supported M ₁ O _x /SiO ₂ Catalysts 16
1.11	Redox Surface Reactivity of Supported M ₁ O _x /M ₂ O _x /SiO ₂ Catalysts 16
1.12	Conclusions 18
	References 19
2	Optimal Design of Hierarchically Structured Porous Catalysts 25 Marc-Olivier Coppens and Gang Wang
2.1	Introduction 25
2.1.1	Intrinsic Catalytic Activity and Selectivity: the Atomic and the Nanoscale 25
2.1.2	Catalyst Particle Size and Geometry. A Question of Reactor Engineering 26

1	Contents	
	2.1.3	Porous Catalyst Architecture and Optimization Methods 27
	2.1.4	Learning from Nature 28
	2.2	Optimizing Mesopore Connectivity and Shape 30
	2.2.1	Topology, Order, and Randomness 30
	2.2.2	Surface Roughness and Fractal Morphology 32
	2.3	Optimizing Catalysts by Macroscopic Distributions in Activity 34
	2.4	Optimal Design of the Highway Network 36
	2.4.1	Novel Capabilities in Synthesizing Hierarchical Pore Spaces 37
	2.4.2	Theoretical Optimization Studies: Opportunities for Optimal
	2.7.2	Design 39
	2.4.3	Application to the Design of a Bimodal Porous Catalyst for NO_x
	2.4.3	Abatement 47
	2.5	Conclusions 49
	2.3	References 50
		References 30
	3	Use of Dendrimers in Catalyst Design 59
	-	Bert D. Chandler, Jeong-Kyu Lee, Harold H. Kung, and Mayfair C. Kung
	3.1	Introduction 59
	3.2	Modified Dendrimer Catalysts 60
	3.2.1	Dendrimer Synthesis 60
	3.2.2	Dendrimer Properties Important for Catalysis 61
	3.2.3	Cooperative Catalysis 61
	3.2.4	Site Isolation 64
	3.3	Indirect Effects of Dendrimer Architecture 66
	3.3.1	Polarity Gradients 66
	3.3.2	Steric and Diffusion Effects 67
	3.3.3	Comparing Dendrimers with Soluble Polymers 68
	3.3.4	Other Novel Dendrimer Effects 70
	3.4	Catalysis by Dendrimer Encapsulated Nanoparticles 72
	3.4.1	Nanoparticle Synthesis 72
	3.4.2	
	3.4.3	
	3.4.4	Bimetallic Nanoparticles 73 Catalysis by Bimetallic DENs 75
	3.5	
	3.6	Dendrimer Templated Nanocages 77 Conclusion 79
	5.0	
		References 79
	4	Rational Design Strategies for Industrial Catalysts 83
		Saeed Alerasool, C.P. Kelkar, and Robert J. Farrauto
	4.1	Introduction 83
	4.2	
	4.3	C. I. D.
	4.3.1	Catalyst Discovery to Commercialization 84 Catalyst Preparation 84
	4.3.2	.
	4.3.3	
	٠.٥.٥	Advanced Testing in Accordance to the Duty Cycle 86

4.3.4	Aging Studies 86
4.3.5	Kinetics 87
4.3.6	Catalyst Scale-Up 88
4.3.7	Quality Control 89
4.4	Example 1: Automobile Pollution Abatement Catalyst System 89
4.4.1	The Quality of the Fuel 90
4.4.2	Base Metals Versus Precious Metals 90
4.4.3	Particulate Versus Monolithic Structures 91
4.4.4	The First Generation 91
4.4.5	The Final Test 92
4.5	Example 2: Dehydrogenation of Light Alkanes 93
4.5.1	Understanding Reaction Kinetics, Thermodynamics, and Process Constraints 94
4.5.2	Formulating the Catalyst 95
4.5.3	Pilot Plant Testing 97
4.5.4	Field Testing 98
4.5.5	Commercial Launch 99
4.6	Example 3: Petroleum Refining – Fluid Catalytic Cracking 100
4.6.1	Understanding Deactivation 101
4.6.2	Age Distribution 105
4.6.3	Attrition 105
4.6.4	Feed Effects 107
4.6.5	Scale-Up and Commercialization 109
4.7	Conclusions 109
	References 110
5	Chiral Modification of Catalytic Surfaces 113
	Zhen Ma and Francisco Zaera
5.1	Introduction 113
5.2	Modification of Metal Surfaces by Cinchona Alkaloid and Related
	Compounds 115
5.2.1	General Background 115
5.2.2	Ordering Within the Adsorbed Layers 116
5.2.3	Modifier–Substrate Interactions 118
5.2.4	Adsorption Geometry 120
5.2.5	Influence of Reaction Conditions 122
5.2.6	Competitive Adsorption of Modifiers 125
5.3	Modification of Metal Surfaces by Tartaric Acid and Related
521	Compounds 127
5.3.1	General Background 127 Long-Range Order Within the Adsorbed Lavers 127
5.3.2	Long tunge of dot with the same and
5.3.3	2000
5.3.4	Taciffiliation of Citation Property
5.4	Contraction
	References 136

VIII
VIII

6	Catalytic Nanomotors 141
	John Gibbs and Yiping Zhao
6.1	Introduction 141
6.1.1	Biological Motors 142
6.1.2	Artificial Catalytic Nanomotors 142
6.2	The Propulsion Mechanism of Catalytic Nanomotors 144
6.2.1	Diffusiophoresis 144
6.2.2	Self-Electrophoresis 145
6.2.3	Bubble Propulsion 148
6.2.4	Interfacial Tension Gradients 149
6.2.5	Bioelectrochemical Propulsion 150
6.3	Advanced Design of Catalytic Nanomotors 151
6.3.1	Dynamic Shadowing Growth 151
6.3.2	Rotary Si–Pt Nanorod Nanomotors 151
6.3.3	L-Shaped Nanorod Nanomotors 152
6.3.4	Rolling Nanospring 153
6.3.5	Hinged Nanorods 154
6.4	Applications, Challenges, and Perspectives 157
	References 158
7	Rational Design and High-Throughput Screening of Metal Open
	Frameworks for Gas Separation and Catalysis 161
	David Farrusseng and Claude Mirodatos
7.1	Introduction 161
7.2	MOF General Features and Brief State of the Art 162
7.2.1	A Building Block Construction 162
7.2.2	Robust Open, Functionalized, and Sizeable Frameworks 162
7.2.3	MOFs Synthesis 164
7.2.4	Adsorption Properties of MOF 166
7.2.5	Rational Strategies to Design MOFs for Targeted Applications 167
7.3	Combinatorial Design of MOF for CO ₂ Capture in a PSA
	Process 167
7.3.1	Process Specifications 167
7.3.2	General Properties of MOFs for CO ₂ Adsorption 168
7.3.3	MOF Design for CO ₂ Capture 171
7.3.3.1	"Structural" Route for Design Strategy 171
7.3.3.2	"Functionalization" Route for Design Strategy 172
7.3.4	Combinatorial Screening Methodology at IRCELYON 173
7.3.5	Combinatorial Synthesis 174
7.3.5.1	Protocol 174
7.3.5.2	Method Validation 174
7.3.5.3	Screening of Metal-BTC System 175
7.3.6	Characterization of Representative Samples 177
7.3.7	HT Testing and CO ₂ -CH ₄ Isotherms of Selected Samples 178
7.4	MOF Design for Catalytic Application 179

7.4.1	Properties of MOF in Catalysis 179
7.4.1.1	Lewis Acid Catalysis 180
7.4.1.2	Brönsted Acid Catalysis 181
7.4.1.3	Basic and Enantioselective Catalysis 182
7.4.1.4	C–C Coupling 183
7.4.1.5	Metal Catalysis 183
7.4.1.6	Wall Functionalization 183
7.4.1.7	Postfunctionalization 184
7.4.2	MOFs – Are They "Heterogenized" Catalysts or Solid
	Catalysts? 185
7.4.2.1	Engineering of Structural Defects in MOF 185
7.4.2.2	Probing Acid Centers by Alkylation Reactions 185
7.4.2.3	Catalyst Characterization 187
7.4.2.4	General Statements on MOF Application for Catalysis 188
7.5	Conclusion 188
	References 189
8	Design of Bimetallic Catalysts: From Model Surfaces to Supported
	Catalysts 195
	Jeffrey P. Bosco, Michael P. Humbert, and Jingguang G. Chen
8.1	Introduction 195
8.2	Experimental and Theoretical Methods 196
8.2.1	Experimental Techniques 196
8.2.2	DFT Modeling 199
8.3	Results and Discussion 199
8.3.1	UHV and DFT Studies on Pt-Ni Model Surfaces 199
8.3.1.1	Adsorption and Desorption of Hydrogen 200
8.3.1.2	Disproportionation and Hydrogenation of Cyclohexene 202
8.3.2	Characterization and Reactor Studies of Supported Pt-Ni
	Catalysts 205
8.3.2.1	TEM and EXAFS Characterization of Ni/Pt/Al ₂ O ₃ Catalysts 205
8.4	Conclusions 211
	References 211
9	Self-Assembled Materials for Catalysis 213
	Kake Zhu, Donghai Wang, and Jun Liu
9.1	Introduction 213
9.2	Mesocale Design 214
9.2.1	Inclusion of Heteroatoms 216
9.2.1.1	Acid Sites 216
9.2.1.2	Dispersed Metal Oxides 219
9.2.2	Embedded Nanoparticles 220
9.2.3	Nonsiliceous Mesoporous Materials 221
9.2.3.1	Molecule Self-Assembly to Mesoporous Catalysts 222
9.2.3.2	Nanoparticles Self-Assembly to Mesoporous Catalysts 222

x	Contents	
	9.2.4	Self-Assembly of Zeolite Seeds into Mesophase 223
	9.2.5	Organic Functional Groups as Catalysts 224
	9.3	Designing Catalysts at the Nanoparticle Surfaces 225
	9.3.1	Polyoxometalates: Nanoparticles with Cations 225
	9.3.2	Dendrimer-Stabilized Metal Nanoparticles 226
	9.4	Perspectives 226
		References 227
	10	Theory-Aided Catalyst Design 231
		Matthew Neurock
	10.1	Introduction 231
	10.2	Catalytic Descriptors 234
	10.2.1	Electronic Descriptors 234
	10.2.2	Energetic Descriptors 235
	10.2.3	Adsorption Energies or Binding Energies 236
	10.2.4	High-Throughput Screening 238
	10.3	High-Throughput Simulation and Design 242
	10.3.1	NO Decomposition 244
	10.3.2	Vinyl Acetate (VAM) Synthesis 249
	10.4	Controlled Patterning 252
	10.5	Catalyst Synthesis and Stability 252
	10.6	Conclusions 253
		References 254
	11	Use of In Situ XAS Techniques for Catalysts' Characterization and
		Design 259
		Christophe Geantet and Jean-Marc M. Millet
	11.1	Introduction 259
	11.2	The X-Ray Absorption Techniques 260
	11.2.1	Principles and Feasibility 260
	11.2.2	Data Acquisition 262
	11.2.3	Spectral Analysis and Interpretations 263
	11.3	Recent Applications of X-Ray Absorption Techniques to the Design of
		Heterogeneous Catalysts 265
	11.3.1	Time Resolution 265
	11.3.2	High-Resolution XANES 271
	11.3.3	High Detection Sensitivity 277
	11.3.4	Spatial Resolution 278
	11.3.5	Coupling of Techniques 280
	11.4	Perspective 285
	11.4.1	Time-Resolved Ultrafast X-Ray Absorption Spectroscopy 286
	11.4.2	X-Ray Emission Spectroscopy (XES) and Resonant Inelastic X-Ray
	11 5	Scattering Spectroscopy (RIXS) 287
	11.5	Conclusions 290 References 291
		NEIGHTH RS 771

12	Catalyst Design Through Dual Templating 295
	Moises A. Carreon and Vadim V. Guliants
12.1	Introduction 295
12.2	Surfactant-Assisted Self-Assembly of Mesoporous Metal Oxides 297
12.2.1	Fundamentals 297
12.2.2	Thermal Stability Considerations 297
12.2.3	Mesostructuring via Evaporation-Induced Self-Assembly 299
12.3	Colloidal Sphere Templating of Macroporous Metal Oxides 301
12.4	Dual Templating of Metal Oxides 303
12.5	Catalytic Applications 305
12.5.1	Mesoporous Metal Oxides 305
12.5.2	Macroporous Metal Oxides 310
12.5.3	Metal Oxides Obtained via Dual Templating 311
12.6	Concluding Remarks 312
	References 313

Index 315