PROPERTIES OF POLYMERS

THEIR CORRELATION WITH CHEMICAL STRUCTURE; THEIR NUMERICAL ESTIMATION AND PREDICTION FROM ADDITIVE GROUP CONTRIBUTIONS

Fourth, completely revised edition

D. W. VAN KREVELEN†
Professor-Emeritus, Delft University of Technology, The Netherlands and Former President of AKZO Research and Engineering N.V., Arnhem, The Netherlands

Revised by

K. TE NIJENHUIS
Associate Professor-Emeritus, Delft University of Technology, Delft, The Netherlands
Part I. General introduction: A bird's-eye view of polymer science and engineering

Chapter 1 Polymer properties

1.1 Approach and objective
Bibliography

Chapter 2 Typology of polymers

2.1 Introduction
2.2 Polymer structure
2.3 Molar mass and molar mass distribution
2.4 Phase transitions in polymers
2.5 Morphology of solid polymers
2.6 Polymeric liquid crystals
2.7 Multiple component polymer systems
2.8 Relaxation phenomena
Appendix I. Milestones in the history of polymer science
Appendix II. Chronological development of commercial polymers
Bibliography

Chapter 3 Typology of properties

3.1 The concept "polymer properties"
3.2 Physical quantities and their units
3.3 Categories of physical quantities
3.4 Dimensionless groups of quantities
3.5 Types of molar properties
3.6 Additive molar functions
Bibliography

Part II. Thermophysical properties of polymers

Chapter 4 Volumetric properties

4.1 Introduction: mass and packing of matter
4.2 Fundamental quantities of mass and volume
4.3 Standard molar volumes at room temperature (298 K)
Chapter 5 Calorimetric properties
5.1 Heat capacity
5.2 Latent heat of crystallization and fusion (melting)
5.3 Enthalpy and entropy
Bibliography

Chapter 6 Transition temperatures
6.1 Introduction
6.2 The glass transition temperature
6.3 The crystalline melting point
6.4 Relationship between glass transition temperature and melting point of polymers
6.5 Relationship between T_g, T_m and other transition temperatures
6.6 Transitions in thermotropic liquid crystal polymers
Appendix I. Rules of thumb for substituting an H-atom by a group X
Appendix II. Similarities and differences between Y_g and Y_m
Bibliography

Chapter 7 Cohesive properties and solubility
7.1 Introduction
7.2 Cohesive energy
7.3 Solubility
7.4 Internal pressure
Bibliography

Chapter 8 Interfacial energy properties
8.1 Introduction
8.2 Surface energy of liquids and melts
8.3 Surface energy of solid polymers
8.4 General expression for the interfacial tension
8.5 Polymer adhesion
Bibliography

Chapter 9 Limiting viscosity number (intrinsic viscosity) and related properties of very dilute solutions
9.1 Introduction
9.2 Molecular dimensions of the conformational state
9.3 The limiting viscosity number (intrinsic viscosity)
9.4 Interrelationships of “limiting” diffusive transport quantities
Bibliography
Part III. Properties of polymers in fields of force

Chapter 10 Optical properties

10.1 Optical properties in general 287
10.2 Light refraction 287
10.3 Reflection and transmission 290
10.4 Birefringence (and optical rotation) 299
10.5 Light scattering 308
10.6 Absorption 313
10.7 Optical appearance properties 313
Bibliography 317

Chapter 11 Electrical properties

11.1 Introduction 319
11.2 Dielectric polarisation 319
11.3 Static electrification and conductivity 333
11.4 Ultimate electrical properties 352
Bibliography 352

Chapter 12 Magnetic properties

12.1 Magnetic susceptibility (magnetic inductive capacity) 355
12.2 Magnetic resonance 359
Bibliography 380

Chapter 13 Mechanical properties of solid polymers

13.1 Introduction 383
13.2 Elastic parameters 383
13.3 Rubber elasticity 401
13.4 Viscoelasticity 405
13.5 Ultimate mechanical properties 453
13.6 Mechanical properties of uniaxially oriented polymers (fibres) 478
Bibliography 500

Chapter 14 Acoustic properties

14.1 Introduction 505
14.2 Sound propagation and absorption 506
14.3 Additive molar functions for sound propagation 513
14.4 Sonic absorption 517
Bibliography 521

Part IV. Transport properties of polymers

Chapter 15 Rheological properties of polymer melts

15.1 Introduction 525
15.2 Modes of deformation and definition of viscosity and normal stress coefficients 526
15.3 Newtonian shear viscosity of polymer melts 533
15.4 Non-Newtonian shear viscosity and first normal stress coefficient of polymer melts 545
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5</td>
<td>Extensional viscosity of polymer melts</td>
<td>564</td>
</tr>
<tr>
<td>15.6</td>
<td>Elastic effects in polymer melts</td>
<td>573</td>
</tr>
<tr>
<td>15.7</td>
<td>Rheological properties of thermotropic liquid crystalline polymers</td>
<td>581</td>
</tr>
<tr>
<td>Appendix I</td>
<td>Flow of polymer melts through narrow tubes and capillaries</td>
<td>591</td>
</tr>
<tr>
<td>Appendix II</td>
<td>Analysis of flow in processing operations</td>
<td>592</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>595</td>
</tr>
</tbody>
</table>

Chapter 16 Rheological properties of polymer solutions

16.1 Introduction
16.2 Dilute polymer solutions
16.3 Concentrated polymer solutions
16.4 Viscoelastic properties of polymer solutions in simple shear flow
16.5 Extensional flow of polymer solutions
16.6 Solutions of lyotropic liquid crystalline polymers
Bibliography

Chapter 17 Transport of thermal energy

17.1 Thermal conductivity
17.2 Appendix
Bibliography

Chapter 18 Properties determining mass transfer in polymeric systems

18.1 Introduction
18.2 Permeation of simple gases
18.3 Permeations of a more complex nature
18.4 Dissolution of polymers as a case of permeation
Bibliography

Chapter 19 Crystallisation and recrystallisation

19.1 Crystallinity, nucleation and growth
19.2 Spherulitic crystallisation of polymers from the melt
19.3 Induced crystallisation of flexible polymeric molecules by pressure and stress
19.4 Crystallisation phenomena in uniaxial drawing: fibre spinning
Bibliography

Part V. Properties determining the chemical stability and breakdown of polymers

Chapter 20 Thermochemical properties

20.1 Thermodynamics and kinetics
20.2 Calculation of the free enthalpy of reaction from group contributions
20.3 Thermodynamics of free radicals
Bibliography
Chapter 21 Thermal decomposition

- **21.1 Introduction**
- **21.2 Thermal degradation**
- **21.3 Char formation**
- **21.4 Kinetics of thermal degradation**
- **Bibliography**

Chapter 22 Chemical degradation

- **22.1 Introduction**
- **22.2 Degradation under the influence of light**
- **22.3 Oxidative degradation**
- **22.4 Photo-oxidation**
- **22.5 Thermal oxidation**
- **22.6 Effects of oxidation degradation**
- **22.7 Stabilisation**
- **22.8 Hydrolytic degradation**
- **22.9 Stress relaxation as a measure of chemical degradation**
- **Bibliography**

Part VI. Polymer properties as an integral concept

Chapter 23 Intrinsic properties in retrospect

- **23.1 Introduction**
- **23.2 Reference values of intrinsic properties expressed as a function of additive quantities**
- **23.3 Effect of structural groups on properties**
- **23.4 Dependence of intrinsic properties on process variables**
- **23.5 Outlook**

Chapter 24 Processing properties

- **24.1 Classification of processes**
- **24.2 Some important processing properties**
- **24.3 Implementation of processing research**
- **Bibliography**

Chapter 25 Product properties (I): Mechanical behaviour and failure

- **25.1 Introduction**
- **25.2 Failure mechanisms in polymers**
- **25.3 Deformation properties**
- **25.4 Toughness and endurance**
- **25.5 Hardness**
- **25.6 Friction and wear**
- **25.7 The mechanical shortcomings of homogeneous materials and the need for composites**
- **Bibliography**
Chapter 26 Product properties (II): Environmental behaviour and failure 847

26.1 Introduction 847
26.2 Thermal end use properties 847
26.3 Flammability and combustion of polymers 850
26.4 Environmental decay of polymers 864
Bibliography 872

Chapter 27 An illustrative example of end use properties: Article properties of textile products 875

27.1 Introduction 875
27.2 Aesthetic properties 875
27.3 Use or performance properties 877
27.4 Maintenance or care properties 882
27.5 Integral evaluation of fibre polymers, fibres and yarns by the criteria mentioned (profile method) 884
Bibliography 885

Part VII. Comprehensive tables

I International system of units (SI) 889
II Survey of conversion factors 891
III Values of some fundamental constants 903
IV Physical constants of the most important solvents 904
V Physical properties of the most important polymers 920
VI Published data of "high performance" polymers 934
VII Code symbols for the most important polymers 938
VIII Trade names and generic names 941
IX Survey of group contributions in additive molar quantities 946

Indexation

Symbol index 957
Author index 979
Subject index 989